Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(4x^(3))/(cos(y))
Choose 1 answer:
(A) 
y=arccos(4x^(3))+C
(B) 
y=arccos(4x^(3)+C)
(C) 
y=arcsin(x^(4)+C)
(D) 
y=arcsin(x^(4))+C

Solve the equation.\newlinedydx=4x3cos(y) \frac{d y}{d x}=\frac{4 x^{3}}{\cos (y)} \newlineChoose 11 answer:\newline(A) y=arccos(4x3)+C y=\arccos \left(4 x^{3}\right)+C \newline(B) y=arccos(4x3+C) y=\arccos \left(4 x^{3}+C\right) \newline(C) y=arcsin(x4+C) y=\arcsin \left(x^{4}+C\right) \newline(D) y=arcsin(x4)+C y=\arcsin \left(x^{4}\right)+C

Full solution

Q. Solve the equation.\newlinedydx=4x3cos(y) \frac{d y}{d x}=\frac{4 x^{3}}{\cos (y)} \newlineChoose 11 answer:\newline(A) y=arccos(4x3)+C y=\arccos \left(4 x^{3}\right)+C \newline(B) y=arccos(4x3+C) y=\arccos \left(4 x^{3}+C\right) \newline(C) y=arcsin(x4+C) y=\arcsin \left(x^{4}+C\right) \newline(D) y=arcsin(x4)+C y=\arcsin \left(x^{4}\right)+C
  1. Separate variables xx and yy: To solve the differential equation dydx=4x3cos(y)\frac{dy}{dx}=\frac{4x^{3}}{\cos(y)}, we need to separate the variables xx and yy. This means we want to get all the yy terms on one side of the equation and all the xx terms on the other side.
  2. Multiply by cos(y)\cos(y): We multiply both sides by cos(y)\cos(y) to get cos(y)dy=4x3dx\cos(y) \, dy = 4x^3 \, dx.
  3. Integrate both sides: Now we integrate both sides of the equation. The left side with respect to yy and the right side with respect to xx.
  4. Apply inverse sine: The integral of cos(y)\cos(y) dydy is sin(y)\sin(y), and the integral of 4x34x^3 dxdx is x4x^4. So we have sin(y)=x4+C\sin(y) = x^4 + C, where CC is the constant of integration.
  5. Final solution: To solve for yy, we take the inverse sine (arcsin) of both sides.y=arcsin(x4+C)y = \arcsin(x^4 + C)
  6. Final solution: To solve for yy, we take the inverse sine (arcsin) of both sides.y=arcsin(x4+C)y = \arcsin(x^4 + C)Looking at the answer choices, we see that option (C) y=arcsin(x4+C)y=\arcsin(x^{4}+C) matches our solution.

More problems from Find derivatives of using multiple formulae