Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=-10x^(4)y
Choose 1 answer:
(A) 
y=-2(x+C)^(5)
(B) 
y=Ce^(-2x^(5))
(C) 
y=-2x^(5)+C
(D) 
y=e^(-2x^(5))+C

Solve the equation.\newlinedydx=10x4y \frac{d y}{d x}=-10 x^{4} y \newlineChoose 11 answer:\newline(A) y=2(x+C)5 y=-2(x+C)^{5} \newline(B) y=Ce2x5 y=C e^{-2 x^{5}} \newline(C) y=2x5+C y=-2 x^{5}+C \newline(D) y=e2x5+C y=e^{-2 x^{5}}+C

Full solution

Q. Solve the equation.\newlinedydx=10x4y \frac{d y}{d x}=-10 x^{4} y \newlineChoose 11 answer:\newline(A) y=2(x+C)5 y=-2(x+C)^{5} \newline(B) y=Ce2x5 y=C e^{-2 x^{5}} \newline(C) y=2x5+C y=-2 x^{5}+C \newline(D) y=e2x5+C y=e^{-2 x^{5}}+C
  1. Separate variables: We are given a first-order separable differential equation (dydx)=10x4y(\frac{dy}{dx})=-10x^{4}y. To solve it, we need to separate the variables yy and xx on different sides of the equation.
  2. Rewrite equation: Rewrite the equation to separate the variables: (1y)dy=10x4dx(\frac{1}{y})dy = -10x^{4}dx.
  3. Integrate both sides: Integrate both sides of the equation. The left side with respect to yy and the right side with respect to xx.(1y)dy=10x4dx.\int(\frac{1}{y})dy = \int-10x^{4}dx.
  4. Exponentiate both sides: The integral of 1y\frac{1}{y}dy is lny\ln|y|, and the integral of 10x4-10x^{4}dx is 2x5-2x^{5}. Don't forget to add the constant of integration CC on one side.\newlinelny=2x5+C\ln|y| = -2x^{5} + C.
  5. Solve for yy: To solve for yy, we exponentiate both sides of the equation to get rid of the natural logarithm.e(lny)=e(2x5+C).e^{(\ln|y|)} = e^{(-2x^{5} + C)}.
  6. Final solution: Since elnye^{\ln|y|} is just y|y| and eCe^{C} is a constant which we can call CC', we have:\newliney=Ce2x5|y| = C'e^{-2x^{5}}.
  7. Final solution: Since elnye^{\ln|y|} is just y|y| and eCe^{C} is a constant which we can call CC', we have:\newliney=Ce2x5|y| = C'e^{-2x^{5}}.Since yy can be positive or negative, we can drop the absolute value to get:\newliney=±Ce2x5y = \pm C'e^{-2x^{5}}.\newlineHowever, since the constant CC' can absorb the ±\pm sign, we can write:\newliney=Ce2x5y = Ce^{-2x^{5}}.

More problems from Find derivatives of using multiple formulae