Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=-(1)/(4)e^(x)y^(-2)
Choose 1 answer:
(A) 
y=+-root(3)(-(3e^(x))/(4)+C)
(B) 
y=root(3)(-(3e^(x))/(4)+C)
(C) 
y=+-root(3)(-(3e^(x))/(4))+C
(D) 
y=root(3)(-(3e^(x))/(4))+C

Solve the equation.\newlinedydx=14exy2 \frac{d y}{d x}=-\frac{1}{4} e^{x} y^{-2} \newlineChoose 11 answer:\newline(A) y=±3ex4+C3 y= \pm \sqrt[3]{-\frac{3 e^{x}}{4}+C} \newline(B) y=3ex4+C3 y=\sqrt[3]{-\frac{3 e^{x}}{4}+C} \newline(C) y=±3ex43+C y= \pm \sqrt[3]{-\frac{3 e^{x}}{4}}+C \newline(D) y=3ex43+C y=\sqrt[3]{-\frac{3 e^{x}}{4}}+C

Full solution

Q. Solve the equation.\newlinedydx=14exy2 \frac{d y}{d x}=-\frac{1}{4} e^{x} y^{-2} \newlineChoose 11 answer:\newline(A) y=±3ex4+C3 y= \pm \sqrt[3]{-\frac{3 e^{x}}{4}+C} \newline(B) y=3ex4+C3 y=\sqrt[3]{-\frac{3 e^{x}}{4}+C} \newline(C) y=±3ex43+C y= \pm \sqrt[3]{-\frac{3 e^{x}}{4}}+C \newline(D) y=3ex43+C y=\sqrt[3]{-\frac{3 e^{x}}{4}}+C
  1. Separate variables: We are given the differential equation (dydx=14exy2)(\frac{dy}{dx} = -\frac{1}{4}e^{x}y^{-2}). This is a separable differential equation, which means we can separate the variables yy and xx on different sides of the equation.
  2. Multiply and integrate: To separate the variables, we multiply both sides by y2y^2 and dxdx to get y2dy=14exdxy^2 dy = -\frac{1}{4}e^{x} dx.
  3. Integrate both sides: Now we integrate both sides of the equation. The left side with respect to yy, and the right side with respect to xx.y2dy=(14)exdx\int y^2 \, dy = \int -(\frac{1}{4})e^{x} \, dx
  4. Simplify and rename constant: The integral of y2y^2 with respect to yy is (1/3)y3(1/3)y^3. The integral of (1/4)ex-(1/4)e^{x} with respect to xx is (1/4)ex-(1/4)e^{x}. So we have:\newline(1/3)y3=(1/4)ex+C(1/3)y^3 = -(1/4)e^{x} + C, where CC is the constant of integration.
  5. Take cube root: We multiply through by 33 to get rid of the fraction on the left side:\newliney3=(34)ex+3Cy^3 = -\left(\frac{3}{4}\right)e^{x} + 3C\newlineWe can rename 3C3C as a new constant, let's call it CC':\newliney3=(34)ex+Cy^3 = -\left(\frac{3}{4}\right)e^{x} + C'
  6. Final solution: To solve for yy, we take the cube root of both sides:\newliney=±(34)ex+C3y = \pm\sqrt[3]{-(\frac{3}{4})e^{x} + C'}\newlineThis matches answer choice (A), which is y=±(3ex4)+C3y = \pm\sqrt[3]{-(\frac{3e^{x}}{4}) + C}.

More problems from Find derivatives of using multiple formulae