Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=-(1)/(3)x^(3)
Choose 1 answer:
(A) 
y=-(x^(4))/(12)+C
(B) 
y=-x^(2)+C
(c) 
y=-(x^(4))/(12+C)
(D) 
y=-x^(2+C)

Solve the equation.\newlinedydx=13x3 \frac{d y}{d x}=-\frac{1}{3} x^{3} \newlineChoose 11 answer:\newline(A) y=x412+C y=-\frac{x^{4}}{12}+C \newline(B) y=x2+C y=-x^{2}+C \newline(c) y=x412+C y=-\frac{x^{4}}{12+C} \newline(D) y=x2+C y=-x^{2+C}

Full solution

Q. Solve the equation.\newlinedydx=13x3 \frac{d y}{d x}=-\frac{1}{3} x^{3} \newlineChoose 11 answer:\newline(A) y=x412+C y=-\frac{x^{4}}{12}+C \newline(B) y=x2+C y=-x^{2}+C \newline(c) y=x412+C y=-\frac{x^{4}}{12+C} \newline(D) y=x2+C y=-x^{2+C}
  1. Integrate with respect to xx: To solve the differential equation dydx=13x3\frac{dy}{dx}=-\frac{1}{3}x^{3}, we need to integrate both sides with respect to xx.
  2. Apply power rule for integration: The antiderivative of (1)/(3)x3-(1)/(3)x^{3} with respect to xx is found using the power rule for integration, which states that the integral of xnx^n with respect to xx is (xn+1)/(n+1)+C(x^{n+1})/(n+1) + C, where CC is the constant of integration.
  3. Antiderivative of 13x3-\frac{1}{3}x^{3}: Applying the power rule to 13x3-\frac{1}{3}x^{3}, we get:\newline13x3dx=13×x3dx=13×x3+13+1+C\int -\frac{1}{3}x^{3} \, dx = -\frac{1}{3} \times \int x^{3} \, dx = -\frac{1}{3} \times \frac{x^{3+1}}{3+1} + C
  4. Simplify the expression: Simplifying the expression, we get: 13×x44+C=x412+C-\frac{1}{3} \times \frac{x^{4}}{4} + C = -\frac{x^{4}}{12} + C
  5. Final antiderivative: Therefore, the antiderivative of 13x3-\frac{1}{3}x^{3} is y=x412+Cy = -\frac{x^{4}}{12} + C, which corresponds to answer choice (A)(A).

More problems from Find derivatives of using multiple formulae