Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

tan theta*cot^(2)theta
Answer:

theta

Simplify to a single trig function with no denominator.\newlinetanθcot2θ \tan \theta \cdot \cot ^{2} \theta \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinetanθcot2θ \tan \theta \cdot \cot ^{2} \theta \newlineAnswer:
  1. Multiply and Simplify: Now, let's multiply tan(θ)\tan(\theta) by cot2(θ)\cot^2(\theta) using the definitions we've just recalled:\newlinetan(θ)cot2(θ)=(sin(θ)/cos(θ))(cos2(θ)/sin2(θ))\tan(\theta) \cdot \cot^2(\theta) = (\sin(\theta) / \cos(\theta)) \cdot (\cos^2(\theta) / \sin^2(\theta))
  2. Cancel Common Terms: Next, we simplify the expression by canceling out common terms: \newline(sin(θ)/cos(θ))(cos2(θ)/sin2(θ))=sin(θ)cos(θ)/sin2(θ)(\sin(\theta) / \cos(\theta)) \cdot (\cos^2(\theta) / \sin^2(\theta)) = \sin(\theta) \cdot \cos(\theta) / \sin^2(\theta)\newlineHere, cos(θ)\cos(\theta) in the numerator and one sin(θ)\sin(\theta) in the denominator cancel out:\newline=cos(θ)/sin(θ)= \cos(\theta) / \sin(\theta)
  3. Use Definition of cot(theta): The expression cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)} is the definition of cot(θ)\cot(\theta):cos(θ)sin(θ)=cot(θ)\frac{\cos(\theta)}{\sin(\theta)} = \cot(\theta)So, the simplified expression is cot(θ)\cot(\theta).

More problems from Simplify radical expressions with variables