Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.\newlinetanxcscx\tan x \cdot \csc x

Full solution

Q. Simplify.\newlinetanxcscx\tan x \cdot \csc x
  1. Understand Trigonometric Identities: Understand the trigonometric identities involved.\newlineThe tangent function (tanx\tan x) is equal to the ratio of the sine function (sinx\sin x) to the cosine function (cosx\cos x), and the cosecant function (cscx\csc x) is the reciprocal of the sine function (sinx\sin x). So we have:\newlinetanx=sinxcosx\tan x = \frac{\sin x}{\cos x}\newlinecscx=1sinx\csc x = \frac{1}{\sin x}
  2. Multiply tanx\tan x by cscx\csc x: Multiply tanx\tan x by cscx\csc x using the identities from Step 11.\newlinetanxcscx=(sinxcosx)(1sinx)\tan x \cdot \csc x = \left(\frac{\sin x}{\cos x}\right) \cdot \left(\frac{1}{\sin x}\right)
  3. Simplify Expression: Simplify the expression by canceling out common factors.\newlineThe sinx\sin x in the numerator and the sinx\sin x in the denominator cancel each other out, leaving us with:\newline(sinx/cosx)(1/sinx)=1/cosx(\sin x / \cos x) * (1 / \sin x) = 1 / \cos x
  4. Recognize Secant Function: Recognize that 1cosx\frac{1}{\cos x} is another trigonometric identity.\newline1cosx\frac{1}{\cos x} is the secant function (secx\sec x). Therefore, the simplified form of tanxcscx\tan x \csc x is:\newline1cosx=secx\frac{1}{\cos x} = \sec x

More problems from Simplify radical expressions: mixed review