Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. \newline84\sqrt{84}

Full solution

Q. Simplify. \newline84\sqrt{84}
  1. Find Prime Factors: 84\sqrt{84}\newlineLet's find the prime factors of the radicand (the number inside the square root).\newlinePrime factorization of a number is the expression of the number as a product of its prime factors.\newline84=2×2×3×7\sqrt{84} = \sqrt{2 \times 2 \times 3 \times 7}
  2. Group and Combine Factors: 2×2×3×7\sqrt{2 \times 2 \times 3 \times 7}\newlineNow, group the identical factors.\newlineCombine the identical factors by using the exponents.\newline2×2×3×7=22×3×7\sqrt{2 \times 2 \times 3 \times 7} = \sqrt{2^2 \times 3 \times 7}
  3. Apply Product Property: 22×3×7\sqrt{2^2 \times 3 \times 7}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline22×3×7=22×3×7\sqrt{2^2 \times 3 \times 7} = \sqrt{2^2} \times \sqrt{3} \times \sqrt{7}
  4. Simplify the Expression: 84=2237\sqrt{84} = \sqrt{2^2} \cdot \sqrt{3} \cdot \sqrt{7} What is the simplest form of 84\sqrt{84}? Square and square root cancel each other out. 2237\sqrt{2^2} \cdot \sqrt{3} \cdot \sqrt{7} = 2372 \cdot \sqrt{3} \cdot \sqrt{7} = 2212\sqrt{21}

More problems from Simplify radical expressions: mixed review