Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. \newline54\sqrt{54}

Full solution

Q. Simplify. \newline54\sqrt{54}
  1. Find Prime Factors: 54\sqrt{54}\newlineLet's start by finding the prime factors of the radicand (the number inside the square root).\newlinePrime factorization of a number is expressing it as the product of its prime factors.\newline54=2×3×3×3\sqrt{54} = \sqrt{2 \times 3 \times 3 \times 3}
  2. Group and Combine Factors: 2×3×3×3\sqrt{2 \times 3 \times 3 \times 3}\newlineNow, group the identical factors.\newlineCombine the identical factors by using the exponents.\newline2×3×3×3=2×33\sqrt{2 \times 3 \times 3 \times 3} = \sqrt{2 \times 3^3}
  3. Apply Product Property: 2×33\sqrt{2 \times 3^3}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline2×33=2×33\sqrt{2 \times 3^3} = \sqrt{2} \times \sqrt{3^3}
  4. Separate Perfect Square: 2×33\sqrt{2} \times \sqrt{3^3}\newline Since 333^3 is 3×3×33 \times 3 \times 3, we can take out a pair of 33s from under the square root as a single 33.\newline 2×33=2×32×3\sqrt{2} \times \sqrt{3^3} = \sqrt{2} \times \sqrt{3^2 \times 3}
  5. Cancel Square Root: 2×32×3\sqrt{2} \times \sqrt{3^2 \times 3}\newlineNow, apply the product property of radicals to separate the perfect square 323^2 from 33.\newline2×32×3=2×32×3\sqrt{2} \times \sqrt{3^2 \times 3} = \sqrt{2} \times \sqrt{3^2} \times \sqrt{3}
  6. Multiply Outside Number: 2×32×3\sqrt{2} \times \sqrt{3^2} \times \sqrt{3}\newlineSquare and square root cancel each other out for 32\sqrt{3^2}.\newline2×32×3=2×3×3\sqrt{2} \times \sqrt{3^2} \times \sqrt{3} = \sqrt{2} \times 3 \times \sqrt{3}
  7. Combine Square Roots: 2×3×3\sqrt{2} \times 3 \times \sqrt{3}\newlineSince 2\sqrt{2} and 3\sqrt{3} cannot be simplified further, we multiply the outside number 33 by 2\sqrt{2} and 3\sqrt{3} separately.\newline2×3×3=3×2×3\sqrt{2} \times 3 \times \sqrt{3} = 3 \times \sqrt{2} \times \sqrt{3}
  8. Multiply Numbers Under Square Root: 3×2×33 \times \sqrt{2} \times \sqrt{3} Combine the square roots under a single radical. 3×2×3=3×2×33 \times \sqrt{2} \times \sqrt{3} = 3 \times \sqrt{2 \times 3}
  9. Multiply Numbers Under Square Root: 3×2×33 \times \sqrt{2} \times \sqrt{3}\newlineCombine the square roots under a single radical.\newline3×2×3=3×2×33×2×33 \times \sqrt{2} \times \sqrt{3} = 3 \times \sqrt{2 \times 3}3 \times \sqrt{2 \times 3}\newlineNow, multiply the numbers under the square root.\newline3×2×3=3×63 \times \sqrt{2 \times 3} = 3 \times \sqrt{6}

More problems from Simplify radical expressions: mixed review