Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. \newline350\sqrt{350}

Full solution

Q. Simplify. \newline350\sqrt{350}
  1. Find Prime Factors: 350\sqrt{350}\newlineLet's find the prime factors of the radicand (the number inside the square root).\newlinePrime factorization of a number is expressing it as the product of its prime factors.\newline350=2×5×5×7\sqrt{350} = \sqrt{2 \times 5 \times 5 \times 7}
  2. Group and Combine: 2×5×5×7\sqrt{2 \times 5 \times 5 \times 7}\newlineNow, group the identical factors.\newlineCombine the identical factors by using the exponents.\newline2×5×5×7=2×52×7\sqrt{2 \times 5 \times 5 \times 7} = \sqrt{2 \times 5^2 \times 7}
  3. Apply Product Property: 2×52×7\sqrt{2 \times 5^2 \times 7}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline2×52×7=52×2×7\sqrt{2 \times 5^2 \times 7} = \sqrt{5^2} \times \sqrt{2 \times 7}
  4. Cancel Square Root: 350=52×2×7\sqrt{350} = \sqrt{5^2} \times \sqrt{2 \times 7}\newlineSquare and square root cancel each other out for the term 52\sqrt{5^2}.\newline52×2×7=5×14\sqrt{5^2} \times \sqrt{2 \times 7} = 5 \times \sqrt{14}

More problems from Simplify radical expressions: mixed review