Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. \newline147\sqrt{147}

Full solution

Q. Simplify. \newline147\sqrt{147}
  1. Find Prime Factors: 147\sqrt{147}\newlineLet's find the prime factors of the radicand (the number inside the square root).\newlinePrime factorization of a number is expressing it as the product of its prime factors.\newline147=3×7×7\sqrt{147} = \sqrt{3 \times 7 \times 7}
  2. Group and Combine Factors: 3×7×7\sqrt{3 \times 7 \times 7}\newlineNow, group the identical factors.\newlineCombine the identical factors by using the exponents.\newline3×72\sqrt{3 \times 7^2}
  3. Apply Product Property: 3×72\sqrt{3 \times 7^2}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline3×72=3×72\sqrt{3 \times 7^2} = \sqrt{3} \times \sqrt{7^2}
  4. Simplify the Expression: 147=3×72\sqrt{147} = \sqrt{3} \times \sqrt{7^2}\newlineWhat is the simplest form of 147\sqrt{147}?\newlineSquare and square root cancel each other out.\newline3×72=3×7\sqrt{3} \times \sqrt{7^2} = \sqrt{3} \times 7\newline=73= 7\sqrt{3}

More problems from Simplify radical expressions: mixed review