Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline1092\frac{10}{-9 - \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator.\newline1092\frac{10}{-9 - \sqrt{2}}
  1. Identify Conjugate: Identify the conjugate of the denominator.\newlineThe conjugate of aba - \sqrt{b} is a+ba + \sqrt{b}. Therefore, the conjugate of 92-9 - \sqrt{2} is 9+2-9 + \sqrt{2}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by a fraction equivalent to 11 that has the conjugate of the denominator in both the numerator and the denominator.\newline1092\frac{10}{-9 - \sqrt{2}} * 9+29+2\frac{-9 + \sqrt{2}}{-9 + \sqrt{2}}
  3. Apply Distributive Property: Apply the distributive property to multiply the numerators and the denominators.\newlineNumerator: 10×(9+2)=90+10×210 \times (-9 + \sqrt{2}) = -90 + 10\times\sqrt{2}\newlineDenominator: (92)×(9+2)=(9)2(2)2=812(-9 - \sqrt{2}) \times (-9 + \sqrt{2}) = (-9)^2 - (\sqrt{2})^2 = 81 - 2
  4. Simplify Denominator: Simplify the denominator. 812=7981 - 2 = 79
  5. Write Simplified Expression: Write the simplified expression.\newlineThe simplified expression with a rationalized denominator is (90+102)/79(-90 + 10\sqrt{2}) / 79.

More problems from Simplify radical expressions using conjugates