Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline10103\frac{10}{-10 - \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline10103\frac{10}{-10 - \sqrt{3}}
  1. Identify Conjugate: Identify the conjugate of the denominator.\newlineThe conjugate of aba - \sqrt{b} is a+ba + \sqrt{b}. Therefore, the conjugate of 103-10 - \sqrt{3} is 10+3-10 + \sqrt{3}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator.\newline(10(10+3))/((103)(10+3))(10 \cdot (-10 + \sqrt{3})) / ((-10 - \sqrt{3}) \cdot (-10 + \sqrt{3}))
  3. Apply Difference of Squares: Apply the difference of squares formula to the denominator.\newlineThe difference of squares formula is (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2. Applying this to the denominator we get:\newline(10)2(3)2=1003=97(-10)^2 - (\sqrt{3})^2 = 100 - 3 = 97
  4. Distribute Numerator: Distribute the numerator.\newlineNow we distribute 1010 across the conjugate in the numerator:\newline10×(10)+10×3=100+10310 \times (-10) + 10 \times \sqrt{3} = -100 + 10\sqrt{3}
  5. Write Simplified Expression: Write the simplified expression.\newlineThe expression is now:\newline(100+103)/97(-100 + 10\sqrt{3}) / 97

More problems from Simplify radical expressions using conjugates