Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume xx is greater than or equal to zero.\newline84x\sqrt{84x}

Full solution

Q. Simplify. Assume xx is greater than or equal to zero.\newline84x\sqrt{84x}
  1. Find Prime Factors: 84x\sqrt{84x}\newlineFirst, let's find the prime factors of the number 8484.\newlinePrime factorization of a number is the product of its prime factors.\newline84x=2×2×3×7×x\sqrt{84x} = \sqrt{2 \times 2 \times 3 \times 7 \times x}
  2. Group Identical Factors: 2×2×3×7×x\sqrt{2 \times 2 \times 3 \times 7 \times x}\newlineNow, group the identical factors and use the exponents for them.\newline2×2×3×7×x=22×3×7×x\sqrt{2 \times 2 \times 3 \times 7 \times x} = \sqrt{2^2 \times 3 \times 7 \times x}
  3. Apply Product Property: 22×3×7×x\sqrt{2^2 \times 3 \times 7 \times x} Apply the product property of radicals, which allows us to take the square root of each factor separately. 22×3×7×x=22×3×7×x\sqrt{2^2 \times 3 \times 7 \times x} = \sqrt{2^2} \times \sqrt{3} \times \sqrt{7} \times \sqrt{x}
  4. Simplify Square Roots: 22×3×7×x\sqrt{2^2} \times \sqrt{3} \times \sqrt{7} \times \sqrt{x}\newlineSince the square root and the square cancel each other out, we can simplify 22\sqrt{2^2} to 22.\newline22×3×7×x=2×3×7×x\sqrt{2^2} \times \sqrt{3} \times \sqrt{7} \times \sqrt{x} = 2 \times \sqrt{3} \times \sqrt{7} \times \sqrt{x}
  5. Combine Remaining Square Roots: 2×3×7×x2 \times \sqrt{3} \times \sqrt{7} \times \sqrt{x}\newlineSince there are no more identical factors to combine, and we cannot simplify the square roots of 33, 77, or xx any further, we can combine the remaining square roots under one radical.\newline2×3×7×x=2×3×7×x2 \times \sqrt{3} \times \sqrt{7} \times \sqrt{x} = 2 \times \sqrt{3 \times 7 \times x}
  6. Multiply Numbers Under Square Root: 2×3×7×x2 \times \sqrt{3 \times 7 \times x}\newlineNow, multiply the numbers under the square root.\newline2×3×7×x=2×21x2 \times \sqrt{3 \times 7 \times x} = 2 \times \sqrt{21x}
  7. Final Simplification: Final Simplification\newlineThe final simplified form of 84x\sqrt{84x} is 2×21x2 \times \sqrt{21x}.

More problems from Simplify radical expressions: mixed review