Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ww is greater than or equal to zero.\newline350w7\sqrt{350w^7}

Full solution

Q. Simplify. Assume ww is greater than or equal to zero.\newline350w7\sqrt{350w^7}
  1. Factorize 350350 and w7w^7: 350w7\sqrt{350w^7}\newlineFirst, let's find the prime factors of the number 350350 and express w7w^7 in terms of w2w^2.\newlinePrime factorization of 350350 is 2×5×5×72 \times 5 \times 5 \times 7.\newline350w7=2×52×7×w7\sqrt{350w^7} = \sqrt{2 \times 5^2 \times 7 \times w^7}
  2. Group identical factors: 2×52×7×w7\sqrt{2 \times 5^2 \times 7 \times w^7}\newlineNow, group the identical factors and express w7w^7 as (w2)3×w(w^2)^3 \times w to separate the perfect squares.\newline2×52×7×w7=2×52×7×(w2)3×w\sqrt{2 \times 5^2 \times 7 \times w^7} = \sqrt{2 \times 5^2 \times 7 \times (w^2)^3 \times w}
  3. Apply product property of radicals: 2×52×7×(w2)3×w\sqrt{2 \times 5^2 \times 7 \times (w^2)^3 \times w} Apply the product property of radicals to separate the perfect squares from the non-perfect squares. 2×52×7×(w2)3×w=52×(w2)3×2×7×w\sqrt{2 \times 5^2 \times 7 \times (w^2)^3 \times w} = \sqrt{5^2} \times \sqrt{(w^2)^3} \times \sqrt{2 \times 7 \times w}
  4. Simplify perfect squares: 52×(w2)3×2×7×w\sqrt{5^2} \times \sqrt{(w^2)^3} \times \sqrt{2 \times 7 \times w}\newlineSimplify the square roots of the perfect squares.\newline52×(w2)3×2×7×w=5×w3×14w\sqrt{5^2} \times \sqrt{(w^2)^3} \times \sqrt{2 \times 7 \times w} = 5 \times w^3 \times \sqrt{14w}
  5. Final simplified form: 5w314w5 \cdot w^3 \cdot \sqrt{14w}\newlineThis is the simplified form of the original expression.

More problems from Simplify radical expressions: mixed review