Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume tt is greater than or equal to zero.\newline20t9\sqrt{20t^9}

Full solution

Q. Simplify. Assume tt is greater than or equal to zero.\newline20t9\sqrt{20t^9}
  1. Factorize and Identify Perfect Squares: 20t9\sqrt{20t^9}\newlineFirst, we need to factor the radicand (the number inside the square root) into its prime factors and identify perfect squares.\newlinePrime factorization of 2020 is 2×2×52 \times 2 \times 5, and we can express t9t^9 as (t4)2×t(t^4)^2 \times t.\newline20t9=2×2×5×(t4)2×t\sqrt{20t^9} = \sqrt{2 \times 2 \times 5 \times (t^4)^2 \times t}
  2. Group Identical Factors: 2×2×5×(t4)2×t\sqrt{2 \times 2 \times 5 \times (t^4)^2 \times t} Now, group the identical factors and the perfect squares. 2×2×5×(t4)2×t=22×5×(t4)2×t\sqrt{2 \times 2 \times 5 \times (t^4)^2 \times t} = \sqrt{2^2 \times 5 \times (t^4)^2 \times t}
  3. Apply Product Property of Radicals: 225(t4)2t\sqrt{2^2 \cdot 5 \cdot (t^4)^2 \cdot t} Apply the product property of radicals, which allows us to take the square root of each factor separately. 225(t4)2t=225(t4)2t\sqrt{2^2 \cdot 5 \cdot (t^4)^2 \cdot t} = \sqrt{2^2} \cdot \sqrt{5} \cdot \sqrt{(t^4)^2} \cdot \sqrt{t}
  4. Simplify Perfect Squares: 22×5×(t4)2×t\sqrt{2^2} \times \sqrt{5} \times \sqrt{(t^4)^2} \times \sqrt{t}\newlineSimplify the square roots of the perfect squares.\newline22×5×(t4)2×t=2×5×t4×t\sqrt{2^2} \times \sqrt{5} \times \sqrt{(t^4)^2} \times \sqrt{t} = 2 \times \sqrt{5} \times t^4 \times \sqrt{t}
  5. Combine Terms Inside Square Root: 2×5×t4×t2 \times \sqrt{5} \times t^4 \times \sqrt{t}\newlineCombine the terms outside the square root with the terms inside the square root.\newline2×t4×5×t=2t4×5t2 \times t^4 \times \sqrt{5} \times \sqrt{t} = 2t^4 \times \sqrt{5t}

More problems from Simplify radical expressions: mixed review