Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ss is greater than or equal to zero.\newline245s8\sqrt{245s^8}

Full solution

Q. Simplify. Assume ss is greater than or equal to zero.\newline245s8\sqrt{245s^8}
  1. Factorize 245245 and s8s^8: 245s8\sqrt{245s^8}\newlineFirst, let's factor 245245 into its prime factors and express s8s^8 in terms of ss squared to the fourth power.\newlinePrime factorization of 245245 is 5×7×75 \times 7 \times 7.\newlines8s^8 can be written as (s2)4(s^2)^4.\newline245s8=5×7×7×(s2)4\sqrt{245s^8} = \sqrt{5 \times 7 \times 7 \times (s^2)^4}
  2. Group Identical Factors: 5×7×7×(s2)4\sqrt{5 \times 7 \times 7 \times (s^2)^4}\newlineNow, group the identical factors and use the exponents.\newline5×72×(s2)4\sqrt{5 \times 7^2 \times (s^2)^4}
  3. Apply Product Property: 5×72×(s2)4\sqrt{5 \times 7^2 \times (s^2)^4}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline5×72×(s2)4=5×72×(s2)4\sqrt{5 \times 7^2 \times (s^2)^4} = \sqrt{5} \times \sqrt{7^2} \times \sqrt{(s^2)^4}
  4. Cancel Square Roots: 5×72×(s2)4\sqrt{5} \times \sqrt{7^2} \times \sqrt{(s^2)^4}\newlineSquare and square root cancel each other out for 72\sqrt{7^2} and (s2)4\sqrt{(s^2)^4}.\newline5×7×(s2)2\sqrt{5} \times 7 \times (s^2)^2\newline= 5×7×s4\sqrt{5} \times 7 \times s^4\newline= 7s457s^4\sqrt{5}

More problems from Simplify radical expressions: mixed review