Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume mm is greater than or equal to zero.\newline27m4\sqrt{27m^4}

Full solution

Q. Simplify. Assume mm is greater than or equal to zero.\newline27m4\sqrt{27m^4}
  1. Factor and Express: 27m4\sqrt{27m^4}\newlineFirst, let's factor the radicand into its prime factors and express m4m^4 as a square of squares.\newline27m4=3×3×3×m2×m2\sqrt{27m^4} = \sqrt{3 \times 3 \times 3 \times m^2 \times m^2}
  2. Group and Simplify: 3×3×3×m2×m2\sqrt{3 \times 3 \times 3 \times m^2 \times m^2}\newlineNow, group the identical factors and use the exponents to simplify the expression.\newline3×3×3×m2×m2=33×(m2)2\sqrt{3 \times 3 \times 3 \times m^2 \times m^2} = \sqrt{3^3 \times (m^2)^2}
  3. Apply Product Property: 33(m2)2\sqrt{3^3 \cdot (m^2)^2}\newlineApply the product property of radicals, which states that ab=ab\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}.\newline33(m2)2=323(m2)2\sqrt{3^3 \cdot (m^2)^2} = \sqrt{3^2} \cdot \sqrt{3} \cdot \sqrt{(m^2)^2}
  4. Simplify Square Roots: 32×3×(m2)2\sqrt{3^2} \times \sqrt{3} \times \sqrt{(m^2)^2}Simplify the square roots where possible. Since 32\sqrt{3^2} and (m2)2\sqrt{(m^2)^2} are perfect squares, they simplify to 33 and m2m^2, respectively.32×3×(m2)2=3×3×m2\sqrt{3^2} \times \sqrt{3} \times \sqrt{(m^2)^2} = 3 \times \sqrt{3} \times m^2
  5. Combine Constants and Variables: 3×3×m23 \times \sqrt{3} \times m^2\newlineCombine the constants and variables outside the square root to get the final simplified form.\newline3×3×m2=3m2×33 \times \sqrt{3} \times m^2 = 3m^2 \times \sqrt{3}

More problems from Simplify radical expressions: mixed review