Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume kk is greater than or equal to zero.\newline45k5\sqrt{45k^5}

Full solution

Q. Simplify. Assume kk is greater than or equal to zero.\newline45k5\sqrt{45k^5}
  1. Prime Factorization and Expression: 45k5\sqrt{45k^5}\newlineLet's do the prime factors of the radicand for the number 4545 and express k5k^5 in terms of k2k^2.\newlinePrime factorization of a number is the product of its primes.\newline45k5=3×3×5×k4×k\sqrt{45k^5} = \sqrt{3 \times 3 \times 5 \times k^4 \times k}
  2. Group Identical Factors: 3×3×5×k4×k\sqrt{3 \times 3 \times 5 \times k^4 \times k} Now, group the identical factors and express k5k^5 as k4k^4 times kk. Combine the identical factors by using the exponents. 3×3×5×k4×k=32×5×k4×k\sqrt{3 \times 3 \times 5 \times k^4 \times k} = \sqrt{3^2 \times 5 \times k^4 \times k}
  3. Product Property of Radicals: 325k4k\sqrt{3^2 \cdot 5 \cdot k^4 \cdot k}\newlineProduct property of radicals:\newlineab=ab\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\newline325k4k=325k4k\sqrt{3^2 \cdot 5 \cdot k^4 \cdot k} = \sqrt{3^2} \cdot \sqrt{5} \cdot \sqrt{k^4} \cdot \sqrt{k}
  4. Square and Square Root Cancelation: 45k5=325k4k\sqrt{45k^5} = \sqrt{3^2} \cdot \sqrt{5} \cdot \sqrt{k^4} \cdot \sqrt{k} Square and square root cancel each other out for 323^2 and k4k^4. 325k4k=35k2k\sqrt{3^2} \cdot \sqrt{5} \cdot \sqrt{k^4} \cdot \sqrt{k} = 3 \cdot \sqrt{5} \cdot k^2 \cdot \sqrt{k}
  5. Final Simplification: Final Simplification\newlineSince kk is greater than or equal to zero, we can leave k2k^2 and k\sqrt{k} as they are.\newlineThe simplified form is 3k25k3k^2 \cdot \sqrt{5k}

More problems from Simplify radical expressions: mixed review