Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ff is greater than or equal to zero.\newline12f7\sqrt{12f^7}

Full solution

Q. Simplify. Assume ff is greater than or equal to zero.\newline12f7\sqrt{12f^7}
  1. Factor and Express: 12f7\sqrt{12f^7}\newlineFirst, we need to factor the radicand (the number inside the square root) into its prime factors and express the variable ff in a way that will allow us to simplify the square root.\newline12f7=2×2×3×f7\sqrt{12f^7} = \sqrt{2 \times 2 \times 3 \times f^7}
  2. Group and Simplify: 2×2×3×f7\sqrt{2 \times 2 \times 3 \times f^7} Now, we group the identical factors and express f7f^7 as f6×ff^6 \times f to make use of the even exponent. 2×2×3×f6×f=22×3×f6×f\sqrt{2 \times 2 \times 3 \times f^6 \times f} = \sqrt{2^2 \times 3 \times f^6 \times f}
  3. Apply Product Property: 22×3×f6×f\sqrt{2^2 \times 3 \times f^6 \times f}\newlineWe apply the product property of radicals, which allows us to take the square root of each factor separately.\newline22×3×f6×f=22×3×f6×f\sqrt{2^2 \times 3 \times f^6 \times f} = \sqrt{2^2} \times \sqrt{3} \times \sqrt{f^6} \times \sqrt{f}
  4. Simplify Perfect Squares: 12f7=223f6f\sqrt{12f^7} = \sqrt{2^2} \cdot \sqrt{3} \cdot \sqrt{f^6} \cdot \sqrt{f} We simplify the square roots of the perfect squares, which are 222^2 and f6f^6. 223f6f=23f3f\sqrt{2^2} \cdot \sqrt{3} \cdot \sqrt{f^6} \cdot \sqrt{f} = 2 \cdot \sqrt{3} \cdot f^3 \cdot \sqrt{f}
  5. Final Simplification: Final Simplification\newlineCombine the constants and the variables outside the square root to get the final simplified form.\newline2f33f=2f33f2 \cdot f^3 \cdot \sqrt{3} \cdot \sqrt{f} = 2f^3 \cdot \sqrt{3f}

More problems from Simplify radical expressions: mixed review