Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ff is greater than or equal to zero.\newline50f3\sqrt{50f^3}

Full solution

Q. Simplify. Assume ff is greater than or equal to zero.\newline50f3\sqrt{50f^3}
  1. Prime Factorization: 50f3\sqrt{50f^3}\newlineLet's do the prime factors of the radicand for the numerical part and express the variable part with exponents.\newlinePrime factorization of 5050 is 2×5×52 \times 5 \times 5, and f3f^3 is already expressed with an exponent.\newline50f3=2×52×f3\sqrt{50f^3} = \sqrt{2 \times 5^2 \times f^3}
  2. Group Identical Factors: 2×52×f3\sqrt{2 \times 5^2 \times f^3}\newlineNow, group the identical factors and express the variable part in pairs.\newlineCombine the identical factors by using the exponents.\newline2×52×f3=52×2×f2×f\sqrt{2 \times 5^2 \times f^3} = \sqrt{5^2} \times \sqrt{2} \times \sqrt{f^2} \times \sqrt{f}
  3. Product Property of Radicals: 522f2f\sqrt{5^2} \cdot \sqrt{2} \cdot \sqrt{f^2} \cdot \sqrt{f}\newlineProduct property of radicals:\newlineab=ab\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\newline522f2f=52ff\sqrt{5^2} \cdot \sqrt{2} \cdot \sqrt{f^2} \cdot \sqrt{f} = 5 \cdot \sqrt{2} \cdot f \cdot \sqrt{f}
  4. Combine Numerical and Variable Parts: 50f3=5×2×f×f\sqrt{50f^3} = 5 \times \sqrt{2} \times f \times \sqrt{f} What is the simplest form of 50f3\sqrt{50f^3}? Combine the numerical and variable parts that are outside the square root. 5×f×2×f5 \times f \times \sqrt{2} \times \sqrt{f} = 5f×2f5f \times \sqrt{2f}

More problems from Simplify radical expressions: mixed review