Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ff is greater than or equal to zero.\newline250f\sqrt{250f}

Full solution

Q. Simplify. Assume ff is greater than or equal to zero.\newline250f\sqrt{250f}
  1. Find Prime Factors: 250f\sqrt{250f}\newlineLet's start by finding the prime factors of the number 250250.\newlinePrime factorization of a number is the expression of the number as a product of its prime factors.\newline250f=2×5×5×5×f\sqrt{250f} = \sqrt{2 \times 5 \times 5 \times 5 \times f}
  2. Group and Combine Factors: 2×5×5×5×f\sqrt{2 \times 5 \times 5 \times 5 \times f} Now, group the identical factors. Combine the identical factors by using the exponents. 2×5×5×5×f=2×53×f\sqrt{2 \times 5 \times 5 \times 5 \times f} = \sqrt{2 \times 5^3 \times f}
  3. Apply Product Property: 2×53×f\sqrt{2 \times 5^3 \times f}\newlineProduct property of radicals:\newlinea×b=a×b\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\newline2×53×f=2×53×f\sqrt{2 \times 5^3 \times f} = \sqrt{2} \times \sqrt{5^3} \times \sqrt{f}
  4. Simplify Square Roots: 2×53×f\sqrt{2} \times \sqrt{5^3} \times \sqrt{f}\newlineSince 53\sqrt{5^3} can be simplified to 5×55 \times \sqrt{5} because 52=255^2 = 25 and 25=5\sqrt{25} = 5, we can rewrite the expression as:\newline2×5×5×f\sqrt{2} \times 5 \times \sqrt{5} \times \sqrt{f}
  5. Combine Square Roots: 2×5×5×f\sqrt{2} \times 5 \times \sqrt{5} \times \sqrt{f}\newlineNow, we can combine the square roots of 55 and f.\newline2×5×5×f\sqrt{2} \times 5 \times \sqrt{5 \times f}
  6. Final Simplified Form: 2×5×5×f\sqrt{2} \times 5 \times \sqrt{5 \times f}\newlineThe final simplified form is:\newline5×2×5f5 \times \sqrt{2} \times \sqrt{5f}\newline5×10f5 \times \sqrt{10f}

More problems from Simplify radical expressions: mixed review