Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume ff is greater than or equal to zero.\newline126f9\sqrt{126f^9}

Full solution

Q. Simplify. Assume ff is greater than or equal to zero.\newline126f9\sqrt{126f^9}
  1. Factorize and Identify Perfect Squares: 126f9\sqrt{126f^9}\newlineFirst, we need to factor the radicand into its prime factors and identify perfect squares.\newlinePrime factorization of 126126 is 2×32×72 \times 3^2 \times 7, and f9f^9 can be written as (f4)2×f(f^4)^2 \times f.\newline126f9=2×32×7×(f4)2×f\sqrt{126f^9} = \sqrt{2 \times 3^2 \times 7 \times (f^4)^2 \times f}
  2. Group Identical Factors: 2×32×7×(f4)2×f\sqrt{2 \times 3^2 \times 7 \times (f^4)^2 \times f} Now, group the identical factors and perfect squares. 2×32×7×(f4)2×f=32×(f4)2×2×7×f\sqrt{2 \times 3^2 \times 7 \times (f^4)^2 \times f} = \sqrt{3^2} \times \sqrt{(f^4)^2} \times \sqrt{2 \times 7 \times f}
  3. Apply Product Property and Simplify: 32×(f4)2×2×7×f\sqrt{3^2} \times \sqrt{(f^4)^2} \times \sqrt{2 \times 7 \times f} Apply the product property of radicals and simplify the square roots of perfect squares. 32×(f4)2×2×7×f=3×f4×14f\sqrt{3^2} \times \sqrt{(f^4)^2} \times \sqrt{2 \times 7 \times f} = 3 \times f^4 \times \sqrt{14f}
  4. Combine Simplified Terms: 3f414f3 \cdot f^4 \cdot \sqrt{14f}\newlineCombine the simplified terms to get the final answer.\newline3f414f3f^4 \cdot \sqrt{14f}

More problems from Simplify radical expressions: mixed review