Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Nyala is bungee jumping. The following function gives her elevation, in meters, 
t seconds after jumping:

E(t)=(80 sin(0.6 t))/(t)+15
What is the instantaneous rate of change of Nyala's elevation after 5 seconds?
Choose 1 answer:
(A) -9.96 meters per second
(B) -9.96 seconds per meter
(C) 
17.26 meters per second
(D) 
17.26 seconds per meter

Nyala is bungee jumping. The following function gives her elevation, in meters, t t seconds after jumping:\newlineE(t)=80sin(0.6t)t+15 E(t)=\frac{80 \sin (0.6 t)}{t}+15 \newlineWhat is the instantaneous rate of change of Nyala's elevation after 55 seconds?\newlineChoose 11 answer:\newline(A) 9-9.9696 meters per second\newline(B) 9-9.9696 seconds per meter\newline(C) 17.26 \mathbf{1 7 . 2 6} meters per second\newline(D) 17.26 \mathbf{1 7 . 2 6} seconds per meter

Full solution

Q. Nyala is bungee jumping. The following function gives her elevation, in meters, t t seconds after jumping:\newlineE(t)=80sin(0.6t)t+15 E(t)=\frac{80 \sin (0.6 t)}{t}+15 \newlineWhat is the instantaneous rate of change of Nyala's elevation after 55 seconds?\newlineChoose 11 answer:\newline(A) 9-9.9696 meters per second\newline(B) 9-9.9696 seconds per meter\newline(C) 17.26 \mathbf{1 7 . 2 6} meters per second\newline(D) 17.26 \mathbf{1 7 . 2 6} seconds per meter
  1. Take Derivative: To find the instantaneous rate of change, we need to take the derivative of E(t)E(t) with respect to tt.
  2. Apply Quotient Rule: Differentiate E(t)E(t) using the quotient rule: v(u)u(v)v2\frac{v(u') - u(v')}{v^2}, where u=80sin(0.6t)u = 80 \sin(0.6 t) and v=tv = t.
  3. Find uu' and vv': First, find the derivative of uu, which is 80cos(0.6t)×0.680 \cos(0.6 t) \times 0.6.
  4. Simplify Expression: Then, find the derivative of vv, which is just 11 since v=tv = t.
  5. Plug in t=5t=5: Now apply the quotient rule: E(t)=t×(80cos(0.6t)×0.6)80sin(0.6t)×1t2E'(t) = \frac{t \times (80 \cos(0.6 t) \times 0.6) - 80 \sin(0.6 t) \times 1}{t^2}.
  6. Calculate Values: Simplify the expression: E(t)=80tcos(0.6t)0.680sin(0.6t)t2E'(t) = \frac{80t \cos(0.6 t) \cdot 0.6 - 80 \sin(0.6 t)}{t^2}.
  7. Calculate Values: Simplify the expression: E(t)=80tcos(0.6t)×0.680sin(0.6t)t2E'(t) = \frac{80t \cos(0.6 t) \times 0.6 - 80 \sin(0.6 t)}{t^2}.Plug in t=5t = 5 seconds into the derivative to find the instantaneous rate of change at t=5t = 5.
  8. Calculate Values: Simplify the expression: E(t)=80tcos(0.6t)0.680sin(0.6t)t2E'(t) = \frac{80t \cos(0.6 t) \cdot 0.6 - 80 \sin(0.6 t)}{t^2}.Plug in t=5t = 5 seconds into the derivative to find the instantaneous rate of change at t=5t = 5.E(5)=805cos(0.65)0.680sin(0.65)52E'(5) = \frac{80\cdot 5 \cos(0.6\cdot 5) \cdot 0.6 - 80 \sin(0.6\cdot 5)}{5^2}.
  9. Calculate Values: Simplify the expression: E(t)=80tcos(0.6t)×0.680sin(0.6t)t2E'(t) = \frac{80t \cos(0.6 t) \times 0.6 - 80 \sin(0.6 t)}{t^2}.Plug in t=5t = 5 seconds into the derivative to find the instantaneous rate of change at t=5t = 5.E(5)=80×5cos(0.6×5)×0.680sin(0.6×5)52E'(5) = \frac{80\times5 \cos(0.6\times5) \times 0.6 - 80 \sin(0.6\times5)}{5^2}.Calculate the values: E(5)=400cos(3)×0.680sin(3)25E'(5) = \frac{400 \cos(3) \times 0.6 - 80 \sin(3)}{25}.
  10. Calculate Values: Simplify the expression: E(t)=80tcos(0.6t)×0.680sin(0.6t)t2E'(t) = \frac{80t \cos(0.6 t) \times 0.6 - 80 \sin(0.6 t)}{t^2}.Plug in t=5t = 5 seconds into the derivative to find the instantaneous rate of change at t=5t = 5.E(5)=80×5cos(0.6×5)×0.680sin(0.6×5)52E'(5) = \frac{80\times5 \cos(0.6\times5) \times 0.6 - 80 \sin(0.6\times5)}{5^2}.Calculate the values: E(5)=400cos(3)×0.680sin(3)25E'(5) = \frac{400 \cos(3) \times 0.6 - 80 \sin(3)}{25}.Use a calculator to find the numerical values of cos(3)\cos(3) and sin(3)\sin(3).
  11. Calculate Values: Simplify the expression: E(t)=(80tcos(0.6t)×0.680sin(0.6t))t2E'(t) = \frac{(80t \cos(0.6 t) \times 0.6 - 80 \sin(0.6 t))}{t^2}. Plug in t=5t = 5 seconds into the derivative to find the instantaneous rate of change at t=5t = 5. E(5)=(80×5cos(0.6×5)×0.680sin(0.6×5))52E'(5) = \frac{(80\times5 \cos(0.6\times5) \times 0.6 - 80 \sin(0.6\times5))}{5^2}. Calculate the values: E(5)=(400cos(3)×0.680sin(3))25E'(5) = \frac{(400 \cos(3) \times 0.6 - 80 \sin(3))}{25}. Use a calculator to find the numerical values of cos(3)\cos(3) and sin(3)\sin(3). E(5)=(400×0.6×(0.99)80×0.14)25E'(5) = \frac{(400 \times 0.6 \times (-0.99) - 80 \times 0.14)}{25}.

More problems from Find derivatives of sine and cosine functions