Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply.

3x^(2)(-2x^(2)-10 x-9)
Answer:

Multiply.\newline3x2(2x210x9) 3 x^{2}\left(-2 x^{2}-10 x-9\right) \newlineAnswer:

Full solution

Q. Multiply.\newline3x2(2x210x9) 3 x^{2}\left(-2 x^{2}-10 x-9\right) \newlineAnswer:
  1. Distribute 3x23x^2: Distribute the term 3x23x^2 to each term inside the parentheses.\newlineWe have the expression 3x2(2x210x9)3x^2(-2x^2 - 10x - 9). To distribute, we multiply 3x23x^2 by each term inside the parentheses separately.
  2. Multiply 2x2-2x^2: Multiply 3x23x^2 by 2x2-2x^2. Using the distributive property, we get 3x2×2x2=6x(2+2)=6x43x^2 \times -2x^2 = -6x^{(2+2)} = -6x^4 (since when we multiply like bases, we add the exponents).
  3. Multiply 10x-10x: Multiply 3x23x^2 by 10x-10x. Again using the distributive property, we get 3x2×10x=30x2+1=30x33x^2 \times -10x = -30x^{2+1} = -30x^3 (since when we multiply like bases, we add the exponents).
  4. Multiply 9-9: Multiply 3x23x^2 by 9-9. Using the distributive property, we get 3x2×9=27x23x^2 \times -9 = -27x^2.
  5. Combine final expression: Combine the results from steps 22, 33, and 44 to get the final expression.\newlineThe final expression is 6x430x327x2-6x^4 - 30x^3 - 27x^2.

More problems from Multiply numbers written in scientific notation