Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply.\newline(3×102)(2×101)(3 \times 10^2)(2 \times 10^1)\newlineChoices:\newline(A) 2×1032 \times 10^3\newline(B) 2×1022 \times 10^2\newline(C) 6×1036 \times 10^3\newline(D) 6×1026 \times 10^2

Full solution

Q. Multiply.\newline(3×102)(2×101)(3 \times 10^2)(2 \times 10^1)\newlineChoices:\newline(A) 2×1032 \times 10^3\newline(B) 2×1022 \times 10^2\newline(C) 6×1036 \times 10^3\newline(D) 6×1026 \times 10^2
  1. Identify Coefficients and Power Terms: We have: \newline(3×102)(2×101)(3 \times 10^2)(2 \times 10^1) \newlineGroup the coefficients and power terms together. \newlineCoefficients: 33 and 22 \newlinePower terms: 10210^2 and 10110^1
  2. Multiply Coefficients: What is 3×23 \times 2? Multiply the coefficients. \newline3×2=63 \times 2 = 6
  3. Combine Power Terms: Write 102×10110^2 \times 10^1 as a single power of 1010. When multiplying powers with the same base, we add the exponents. \newline102×10110^2 \times 10^1\newline=102+1= 10^{2 + 1}\newline=103= 10^3
  4. Write Final Answer in Scientific Notation: We found: \newlineCoefficient = 66 \newlinePower term = 10310^3 \newlineWrite the final answer in scientific notation. Substitute 66 for aa and 33 for bb in a×10ba \times 10^b. \newlineScientific notation: 6×1036 \times 10^3

More problems from Multiply numbers written in scientific notation