Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=sqrt(ln(x)).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
(((1)/(2sqrtx)))/(sqrtx)
(B) 
(1)/(sqrtx)
(C) 
(1)/(2xsqrt(ln(x)))
(D) 
sqrt((1)/(x))

Let y=ln(x) y=\sqrt{\ln (x)} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) (12x)x \frac{\left(\frac{1}{2 \sqrt{x}}\right)}{\sqrt{x}} \newline(B) 1x \frac{1}{\sqrt{x}} \newline(C) 12xln(x) \frac{1}{2 x \sqrt{\ln (x)}} \newline(D) 1x \sqrt{\frac{1}{x}}

Full solution

Q. Let y=ln(x) y=\sqrt{\ln (x)} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) (12x)x \frac{\left(\frac{1}{2 \sqrt{x}}\right)}{\sqrt{x}} \newline(B) 1x \frac{1}{\sqrt{x}} \newline(C) 12xln(x) \frac{1}{2 x \sqrt{\ln (x)}} \newline(D) 1x \sqrt{\frac{1}{x}}
  1. Identify Function: Identify the function to differentiate.\newlineWe have the function y=ln(x)y = \sqrt{\ln(x)}. We need to find the derivative of yy with respect to xx, which is denoted as dydx\frac{dy}{dx}.
  2. Apply Chain Rule: Apply the chain rule for differentiation.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. In this case, the outer function is the square root function, and the inner function is the natural logarithm of xx.
  3. Differentiate Outer Function: Differentiate the outer function with respect to the inner function.\newlineThe outer function is u\sqrt{u}, where u=ln(x)u = \ln(x). The derivative of u\sqrt{u} with respect to uu is 12u\frac{1}{2\sqrt{u}}. We will substitute uu back with ln(x)\ln(x) later.
  4. Differentiate Inner Function: Differentiate the inner function with respect to xx. The inner function is ln(x)\ln(x). The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  5. Apply Chain Rule: Apply the chain rule by multiplying the derivatives from Step 33 and Step 44.\newline(dydx)=12ln(x)×1x=12xln(x)(\frac{dy}{dx}) = \frac{1}{2\sqrt{\ln(x)}} \times \frac{1}{x} = \frac{1}{2x\sqrt{\ln(x)}}.
  6. Match Result: Match the result with the given choices.\newlineThe derivative we found is 12xln(x)\frac{1}{2x\sqrt{\ln(x)}}, which corresponds to choice CC.

More problems from Domain and range of square root functions: equations