Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=(e^(x))/(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
e^(x)
(B) 
(e^(x)-1)/(x^(2))
(C) 
(e^(x-1))/(x^(2))
(D) 
(e^(x)(x-1))/(x^(2))

Let y=exx y=\frac{e^{x}}{x} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex e^{x} \newline(B) ex1x2 \frac{e^{x}-1}{x^{2}} \newline(C) ex1x2 \frac{e^{x-1}}{x^{2}} \newline(D) ex(x1)x2 \frac{e^{x}(x-1)}{x^{2}}

Full solution

Q. Let y=exx y=\frac{e^{x}}{x} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex e^{x} \newline(B) ex1x2 \frac{e^{x}-1}{x^{2}} \newline(C) ex1x2 \frac{e^{x-1}}{x^{2}} \newline(D) ex(x1)x2 \frac{e^{x}(x-1)}{x^{2}}
  1. Apply Quotient Rule: To find the derivative of the function y=exxy = \frac{e^x}{x}, we will use the quotient rule, which states that if you have a function that is the quotient of two functions, u(x)v(x)\frac{u(x)}{v(x)}, then its derivative is given by v(x)u(x)u(x)v(x)(v(x))2\frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{(v(x))^2}.
  2. Find u(x)u(x) and v(x)v(x): Let u(x)=exu(x) = e^x and v(x)=xv(x) = x. We need to find the derivatives of u(x)u(x) and v(x)v(x). The derivative of u(x)u(x) with respect to xx is u(x)=exu'(x) = e^x, since the derivative of exe^x is exe^x. The derivative of v(x)v(x) with respect to xx is v(x)v(x)33, since the derivative of xx with respect to xx is v(x)v(x)66.
  3. Use Quotient Rule: Now we apply the quotient rule: (dy)/(dx)=(v(x)u(x)u(x)v(x))/(v(x))2(dy)/(dx) = (v(x) \cdot u'(x) - u(x) \cdot v'(x)) / (v(x))^2. Substituting u(x)u(x), u(x)u'(x), v(x)v(x), and v(x)v'(x) into this formula, we get (dy)/(dx)=(xexex1)/x2(dy)/(dx) = (x \cdot e^x - e^x \cdot 1) / x^2.
  4. Simplify Expression: Simplify the expression: (dydx)=xexexx2(\frac{dy}{dx}) = \frac{x \cdot e^x - e^x}{x^2}. We can factor out exe^x from the numerator to get (dydx)=ex(x1)x2(\frac{dy}{dx}) = \frac{e^x \cdot (x - 1)}{x^2}.
  5. Final Derivative: The final simplified derivative of the function y=exxy = \frac{e^x}{x} is dydx=ex(x1)x2\frac{dy}{dx} = \frac{e^x \cdot (x - 1)}{x^2}. This corresponds to answer choice (D).

More problems from Find derivatives of using multiple formulae