Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=(e^(x))/(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
(e^(x-1))/(x^(2))
(B) 
(e^(x)(x-1))/(x^(2))
(C) 
e^(x)
(D) 
(e^(x)-1)/(x^(2))

Let y=exx y=\frac{e^{x}}{x} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex1x2 \frac{e^{x-1}}{x^{2}} \newline(B) ex(x1)x2 \frac{e^{x}(x-1)}{x^{2}} \newline(C) ex e^{x} \newline(D) ex1x2 \frac{e^{x}-1}{x^{2}}

Full solution

Q. Let y=exx y=\frac{e^{x}}{x} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex1x2 \frac{e^{x-1}}{x^{2}} \newline(B) ex(x1)x2 \frac{e^{x}(x-1)}{x^{2}} \newline(C) ex e^{x} \newline(D) ex1x2 \frac{e^{x}-1}{x^{2}}
  1. Identify function: Identify the function to differentiate.\newlineWe are given the function y=exxy = \frac{e^x}{x}, and we need to find its derivative with respect to xx. This is a quotient of two functions, so we will use the quotient rule for differentiation.
  2. Apply quotient rule: Apply the quotient rule.\newlineThe quotient rule states that the derivative of a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)} is given by h(x)=g(x)f(x)f(x)g(x)(g(x))2h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}. Here, f(x)=exf(x) = e^x and g(x)=xg(x) = x.
  3. Differentiate functions: Differentiate f(x)=exf(x) = e^x and g(x)=xg(x) = x. The derivative of f(x)=exf(x) = e^x with respect to xx is f(x)=exf'(x) = e^x. The derivative of g(x)=xg(x) = x with respect to xx is g(x)=1g'(x) = 1.
  4. Plug derivatives into formula: Plug the derivatives into the quotient rule formula. Using the derivatives from Step 33, we get h(x)=xexex1x2h'(x) = \frac{x \cdot e^x - e^x \cdot 1}{x^2}.
  5. Simplify expression: Simplify the expression.\newlineSimplify the numerator: xexex=ex(x1)x \cdot e^x - e^x = e^x(x - 1).\newlineNow the derivative is h(x)=ex(x1)x2h'(x) = \frac{e^x(x - 1)}{x^2}.
  6. Match with options: Match the result with the given options.\newlineThe simplified derivative ex(x1)/x2e^x(x - 1) / x^2 matches option (B)(B).

More problems from Find derivatives of using multiple formulae