Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=(1)/(x)sin(x).

(dy)/(dx)=

Let y=1xsin(x) y=\frac{1}{x} \sin (x) .\newlinedydx= \frac{d y}{d x}=

Full solution

Q. Let y=1xsin(x) y=\frac{1}{x} \sin (x) .\newlinedydx= \frac{d y}{d x}=
  1. Identify function: Identify the function to differentiate: y=1xsin(x)y = \frac{1}{x}\sin(x).
  2. Recognize product: Recognize that the function is a product of two functions, (1x)(\frac{1}{x}) and sin(x)\sin(x).
  3. Apply product rule: Apply the product rule for differentiation: (ddx)[u(x)v(x)]=u(x)v(x)+u(x)v(x)(\frac{d}{dx})[u(x)v(x)] = u'(x)v(x) + u(x)v'(x), where u(x)=1xu(x) = \frac{1}{x} and v(x)=sin(x)v(x) = \sin(x).
  4. Differentiate u(x)u(x): Differentiate u(x)=1xu(x) = \frac{1}{x} to get u(x)=1x2u'(x) = -\frac{1}{x^2}.
  5. Differentiate v(x)v(x): Differentiate v(x)=sin(x)v(x) = \sin(x) to get v(x)=cos(x)v'(x) = \cos(x).
  6. Substitute into formula: Substitute u(x)u'(x) and v(x)v'(x) into the product rule formula: (dydx)=(1x2)sin(x)+(1x)cos(x)(\frac{dy}{dx}) = (-\frac{1}{x^2})\sin(x) + (\frac{1}{x})\cos(x).
  7. Simplify expression: Simplify the expression: \((\frac{dy}{dx}) = -\frac{\sin(x)}{x^\(2\)} + \frac{\cos(x)}{x}\.

More problems from Write a formula for an arithmetic sequence