Q. Let h(x)=−x3+4.What is the absolute maximum value of h over the closed interval [−2,2] ?Choose 1 answer:(A) 12(B) 16(C) 4(D) −16
Find Critical Points: To find the absolute maximum value of the function h(x)=−x3+4 over the closed interval [−2,2], we need to evaluate the function at the critical points and the endpoints of the interval.
Derivative Calculation: First, let's find the critical points by taking the derivative of h(x) and setting it equal to zero.h′(x)=dxd(−x3+4)=−3x2.
Evaluate Critical Points: Now, we set the derivative equal to zero to find the critical points:−3x2=0x2=0x=0.
Evaluate Endpoints: The only critical point within the interval [−2,2] is x=0. Now we will evaluate the function h(x) at the critical point and at the endpoints of the interval.
Compare Values: Evaluating h(x) at x=0:h(0)=−(0)3+4=4.
Compare Values: Evaluating h(x) at x=0: h(0)=−(0)3+4=4.Evaluating h(x) at the left endpoint x=−2: h(−2)=−(−2)3+4=−(−8)+4=8+4=12.
Compare Values: Evaluating h(x) at x=0: h(0)=−(0)3+4=4.Evaluating h(x) at the left endpoint x=−2: h(−2)=−(−2)3+4=−(−8)+4=8+4=12.Evaluating h(x) at the right endpoint x=2: h(2)=−(2)3+4=−8+4=−4.
Compare Values: Evaluating h(x) at x=0: h(0)=−(0)3+4=4.Evaluating h(x) at the left endpoint x=−2: h(−2)=−(−2)3+4=−(−8)+4=8+4=12.Evaluating h(x) at the right endpoint x=2: h(2)=−(2)3+4=−8+4=−4.Comparing the values of h(x) at the critical point and the endpoints, we find that the absolute maximum value is x=00, which occurs at x=−2.
More problems from Evaluate expression when a complex numbers and a variable term is given