Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=-x^(3)+4.
What is the absolute maximum value of 
h over the closed interval 
[-2,2] ?
Choose 1 answer:
(A) 
12
(B) 
16
(C) 4
(D) -16

Let h(x)=x3+4 h(x)=-x^{3}+4 .\newlineWhat is the absolute maximum value of h h over the closed interval [2,2] [-2,2] ?\newlineChoose 11 answer:\newline(A) 12 \mathbf{1 2} \newline(B) 16 \mathbf{1 6} \newline(C) 44\newline(D) 16-16

Full solution

Q. Let h(x)=x3+4 h(x)=-x^{3}+4 .\newlineWhat is the absolute maximum value of h h over the closed interval [2,2] [-2,2] ?\newlineChoose 11 answer:\newline(A) 12 \mathbf{1 2} \newline(B) 16 \mathbf{1 6} \newline(C) 44\newline(D) 16-16
  1. Find Critical Points: To find the absolute maximum value of the function h(x)=x3+4h(x) = -x^3 + 4 over the closed interval [2,2][-2,2], we need to evaluate the function at the critical points and the endpoints of the interval.
  2. Derivative Calculation: First, let's find the critical points by taking the derivative of h(x)h(x) and setting it equal to zero.h(x)=ddx(x3+4)=3x2.h'(x) = \frac{d}{dx} (-x^3 + 4) = -3x^2.
  3. Evaluate Critical Points: Now, we set the derivative equal to zero to find the critical points:\newline3x2=0-3x^2 = 0\newlinex2=0x^2 = 0\newlinex=0x = 0.
  4. Evaluate Endpoints: The only critical point within the interval [2,2][-2,2] is x=0x = 0. Now we will evaluate the function h(x)h(x) at the critical point and at the endpoints of the interval.
  5. Compare Values: Evaluating h(x)h(x) at x=0x = 0:h(0)=(0)3+4=4h(0) = -(0)^3 + 4 = 4.
  6. Compare Values: Evaluating h(x)h(x) at x=0x = 0:
    h(0)=(0)3+4=4h(0) = -(0)^3 + 4 = 4.Evaluating h(x)h(x) at the left endpoint x=2x = -2:
    h(2)=(2)3+4=(8)+4=8+4=12h(-2) = -(-2)^3 + 4 = -(-8) + 4 = 8 + 4 = 12.
  7. Compare Values: Evaluating h(x)h(x) at x=0x = 0:
    h(0)=(0)3+4=4h(0) = -(0)^3 + 4 = 4.Evaluating h(x)h(x) at the left endpoint x=2x = -2:
    h(2)=(2)3+4=(8)+4=8+4=12h(-2) = -(-2)^3 + 4 = -(-8) + 4 = 8 + 4 = 12.Evaluating h(x)h(x) at the right endpoint x=2x = 2:
    h(2)=(2)3+4=8+4=4h(2) = -(2)^3 + 4 = -8 + 4 = -4.
  8. Compare Values: Evaluating h(x)h(x) at x=0x = 0:
    h(0)=(0)3+4=4h(0) = -(0)^3 + 4 = 4.Evaluating h(x)h(x) at the left endpoint x=2x = -2:
    h(2)=(2)3+4=(8)+4=8+4=12h(-2) = -(-2)^3 + 4 = -(-8) + 4 = 8 + 4 = 12.Evaluating h(x)h(x) at the right endpoint x=2x = 2:
    h(2)=(2)3+4=8+4=4h(2) = -(2)^3 + 4 = -8 + 4 = -4.Comparing the values of h(x)h(x) at the critical point and the endpoints, we find that the absolute maximum value is x=0x = 000, which occurs at x=2x = -2.

More problems from Evaluate expression when a complex numbers and a variable term is given