Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=-x^(3)+4.
What is the absolute maximum value of 
h over the closed interval 
[-2,2] ?
Choose 1 answer:
(A) 
12
(B) 4
(C) -16
(D) 
16

Let h(x)=x3+4 h(x)=-x^{3}+4 .\newlineWhat is the absolute maximum value of h h over the closed interval [2,2] [-2,2] ?\newlineChoose 11 answer:\newline(A) 12 \mathbf{1 2} \newline(B) 44\newline(C) 16-16\newline(D) 16 \mathbf{1 6}

Full solution

Q. Let h(x)=x3+4 h(x)=-x^{3}+4 .\newlineWhat is the absolute maximum value of h h over the closed interval [2,2] [-2,2] ?\newlineChoose 11 answer:\newline(A) 12 \mathbf{1 2} \newline(B) 44\newline(C) 16-16\newline(D) 16 \mathbf{1 6}
  1. Find Critical Points: To find the absolute maximum value of h(x)h(x) on the interval [2,2][-2,2], we need to evaluate the function at the critical points and the endpoints of the interval.
  2. Evaluate Function: First, let's find the critical points by taking the derivative of h(x)h(x) and setting it equal to zero.\newlineh(x)=ddx(x3+4)=3x2h'(x) = \frac{d}{dx} (-x^3 + 4) = -3x^2\newlineSet h(x)=0h'(x) = 0 to find critical points:\newline3x2=0-3x^2 = 0\newlinex=0x = 0
  3. Compare Values: Now we evaluate the function h(x)h(x) at the critical point x=0x = 0 and at the endpoints of the interval x=2x = -2 and x=2x = 2.
    h(0)=(0)3+4=4h(0) = -(0)^3 + 4 = 4
    h(2)=(2)3+4=(8)+4=8+4=12h(-2) = -(-2)^3 + 4 = -(-8) + 4 = 8 + 4 = 12
    h(2)=(2)3+4=8+4=4h(2) = -(2)^3 + 4 = -8 + 4 = -4
  4. Identify Absolute Maximum: Comparing the values of h(x)h(x) at the critical point and the endpoints, we find that the absolute maximum value is 1212, which occurs at x=2x = -2.
  5. Identify Absolute Maximum: Comparing the values of h(x)h(x) at the critical point and the endpoints, we find that the absolute maximum value is 1212, which occurs at x=2x = -2.Therefore, the absolute maximum value of h(x)h(x) over the interval [2,2][-2,2] is 1212.

More problems from Evaluate expression when a complex numbers and a variable term is given