Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(cos(x))/(ln(x)).
Find 
h^(')(x).
Choose 1 answer:
(A) 
(-x sin(x)ln(x)-cos(x))/(x(ln(x))^(2))
(B) 
-x sin(x)
(C) 
(ln(x)sin(x)-cos(x))/(x ln(x))
(D) 
sin(x)-(1)/(x)

Let h(x)=cos(x)ln(x) h(x)=\frac{\cos (x)}{\ln (x)} .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) xsin(x)ln(x)cos(x)x(ln(x))2 \frac{-x \sin (x) \ln (x)-\cos (x)}{x(\ln (x))^{2}} \newline(B) xsin(x) -x \sin (x) \newline(C) ln(x)sin(x)cos(x)xln(x) \frac{\ln (x) \sin (x)-\cos (x)}{x \ln (x)} \newline(D) sin(x)1x \sin (x)-\frac{1}{x}

Full solution

Q. Let h(x)=cos(x)ln(x) h(x)=\frac{\cos (x)}{\ln (x)} .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) xsin(x)ln(x)cos(x)x(ln(x))2 \frac{-x \sin (x) \ln (x)-\cos (x)}{x(\ln (x))^{2}} \newline(B) xsin(x) -x \sin (x) \newline(C) ln(x)sin(x)cos(x)xln(x) \frac{\ln (x) \sin (x)-\cos (x)}{x \ln (x)} \newline(D) sin(x)1x \sin (x)-\frac{1}{x}
  1. Identify Functions: To find the derivative of the function h(x)=cos(x)ln(x)h(x) = \frac{\cos(x)}{\ln(x)}, we will use the quotient rule, which states that the derivative of a function that is the quotient of two other functions, u(x)v(x)\frac{u(x)}{v(x)}, is given by v(x)u(x)u(x)v(x)(v(x))2\frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}.
  2. Find Derivatives: First, we identify the functions u(x)u(x) and v(x)v(x) where u(x)=cos(x)u(x) = \cos(x) and v(x)=ln(x)v(x) = \ln(x). We will need to find the derivatives u(x)u'(x) and v(x)v'(x).
  3. Apply Quotient Rule: The derivative of u(x)=cos(x)u(x) = \cos(x) with respect to xx is u(x)=sin(x)u'(x) = -\sin(x).
  4. Simplify Expression: The derivative of v(x)=ln(x)v(x) = \ln(x) with respect to xx is v(x)=1xv'(x) = \frac{1}{x}.
  5. Combine Terms: Now we apply the quotient rule: h(x)=v(x)u(x)u(x)v(x)(v(x))2h'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}. Substituting the derivatives we found, we get h(x)=ln(x)(sin(x))cos(x)(1x)(ln(x))2h'(x) = \frac{\ln(x)(-\sin(x)) - \cos(x)(\frac{1}{x})}{(\ln(x))^2}.
  6. Match Answer Choices: Simplify the expression: h(x)=ln(x)sin(x)cos(x)x(ln(x))2h'(x) = \frac{-\ln(x)\sin(x) - \frac{\cos(x)}{x}}{(\ln(x))^2}.
  7. Match Answer Choices: Simplify the expression: h(x)=ln(x)sin(x)cos(x)x(ln(x))2h'(x) = \frac{-\ln(x)\sin(x) - \frac{\cos(x)}{x}}{(\ln(x))^2}.We can further simplify by combining the terms in the numerator over a common denominator, which is xln(x)x\ln(x): h(x)=xln(x)sin(x)cos(x)x(ln(x))2h'(x) = \frac{-x\ln(x)\sin(x) - \cos(x)}{x(\ln(x))^2}.
  8. Match Answer Choices: Simplify the expression: h(x)=ln(x)sin(x)cos(x)/x(ln(x))2h'(x) = \frac{-\ln(x)\sin(x) - \cos(x)/x}{(\ln(x))^2}.We can further simplify by combining the terms in the numerator over a common denominator, which is xln(x)x\ln(x): h(x)=xln(x)sin(x)cos(x)x(ln(x))2h'(x) = \frac{-x\ln(x)\sin(x) - \cos(x)}{x(\ln(x))^2}.Now we look at the answer choices to see which one matches our derivative:\newline(A) xsin(x)ln(x)cos(x)x(ln(x))2\frac{-x \sin(x)\ln(x)-\cos(x)}{x(\ln(x))^{2}} matches our result.\newline(B) xsin(x)-x \sin(x) does not match our result.\newline(C) ln(x)sin(x)cos(x)xln(x)\frac{\ln(x)\sin(x)-\cos(x)}{x \ln(x)} does not match our result.\newline(D) sin(x)1x\sin(x)-\frac{1}{x} does not match our result.

More problems from Find derivatives of using multiple formulae