Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=sqrtxsin(x).

g^(')(x)=

Let g(x)=xsin(x) g(x)=\sqrt{x} \sin (x) .\newlineg(x)= g^{\prime}(x)=

Full solution

Q. Let g(x)=xsin(x) g(x)=\sqrt{x} \sin (x) .\newlineg(x)= g^{\prime}(x)=
  1. Identify Components: Identify the function components to apply the product rule for differentiation. g(x)=xsin(x)=(x1/2)sin(x)g(x) = \sqrt{x}\sin(x) = (x^{1/2})\sin(x)
  2. Apply Product Rule: Differentiate using the product rule: fgfg^{'} = f^{'}g + fg^{'}\. Let f(x)=x12f(x) = x^{\frac{1}{2}} and g(x)=sin(x)g(x) = \sin(x).
  3. Differentiate f(x)f(x): Differentiate f(x)=x(1/2)f(x) = x^{(1/2)}.\newlinef(x)=(12)x(1/2)f^{\prime}(x) = \left(\frac{1}{2}\right)x^{(-1/2)}
  4. Differentiate g(x)g(x): Differentiate g(x)=sin(x)g(x) = \sin(x).g(x)=cos(x)g^{\prime}(x) = \cos(x)
  5. Apply Rule: Apply the product rule.\newlineg(x)=f(x)g(x)+f(x)g(x)g^{\prime}(x) = f^{\prime}(x)g(x) + f(x)g^{\prime}(x)\newlineg(x)=(12)x12sin(x)+x12cos(x)g^{\prime}(x) = \left(\frac{1}{2}\right)x^{-\frac{1}{2}}\sin(x) + x^{\frac{1}{2}}\cos(x)
  6. Simplify Expression: Simplify the expression. g(x)=12x12sin(x)+x12cos(x)g^{'}(x) = \frac{1}{2}x^{-\frac{1}{2}}\sin(x) + x^{\frac{1}{2}}\cos(x)

More problems from Domain and range of square root functions: equations