Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
g
(
x
)
=
x
sin
(
x
)
g(x)=\sqrt{x} \sin (x)
g
(
x
)
=
x
sin
(
x
)
.
\newline
g
′
(
x
)
=
g^{\prime}(x)=
g
′
(
x
)
=
View step-by-step help
Home
Math Problems
Algebra 1
Domain and range of square root functions: equations
Full solution
Q.
Let
g
(
x
)
=
x
sin
(
x
)
g(x)=\sqrt{x} \sin (x)
g
(
x
)
=
x
sin
(
x
)
.
\newline
g
′
(
x
)
=
g^{\prime}(x)=
g
′
(
x
)
=
Identify Components:
Identify the function components to apply the product rule for differentiation.
g
(
x
)
=
x
sin
(
x
)
=
(
x
1
/
2
)
sin
(
x
)
g(x) = \sqrt{x}\sin(x) = (x^{1/2})\sin(x)
g
(
x
)
=
x
sin
(
x
)
=
(
x
1/2
)
sin
(
x
)
Apply Product Rule:
Differentiate using the product rule:
f
g
fg
f
g
^{'} = f^{'}g + fg^{'}\. Let
f
(
x
)
=
x
1
2
f(x) = x^{\frac{1}{2}}
f
(
x
)
=
x
2
1
and
g
(
x
)
=
sin
(
x
)
g(x) = \sin(x)
g
(
x
)
=
sin
(
x
)
.
Differentiate
f
(
x
)
f(x)
f
(
x
)
:
Differentiate
f
(
x
)
=
x
(
1
/
2
)
f(x) = x^{(1/2)}
f
(
x
)
=
x
(
1/2
)
.
\newline
f
′
(
x
)
=
(
1
2
)
x
(
−
1
/
2
)
f^{\prime}(x) = \left(\frac{1}{2}\right)x^{(-1/2)}
f
′
(
x
)
=
(
2
1
)
x
(
−
1/2
)
Differentiate
g
(
x
)
g(x)
g
(
x
)
:
Differentiate
g
(
x
)
=
sin
(
x
)
g(x) = \sin(x)
g
(
x
)
=
sin
(
x
)
.
g
′
(
x
)
=
cos
(
x
)
g^{\prime}(x) = \cos(x)
g
′
(
x
)
=
cos
(
x
)
Apply Rule:
Apply the product rule.
\newline
g
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
g^{\prime}(x) = f^{\prime}(x)g(x) + f(x)g^{\prime}(x)
g
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
\newline
g
′
(
x
)
=
(
1
2
)
x
−
1
2
sin
(
x
)
+
x
1
2
cos
(
x
)
g^{\prime}(x) = \left(\frac{1}{2}\right)x^{-\frac{1}{2}}\sin(x) + x^{\frac{1}{2}}\cos(x)
g
′
(
x
)
=
(
2
1
)
x
−
2
1
sin
(
x
)
+
x
2
1
cos
(
x
)
Simplify Expression:
Simplify the expression.
g
′
(
x
)
=
1
2
x
−
1
2
sin
(
x
)
+
x
1
2
cos
(
x
)
g^{'}(x) = \frac{1}{2}x^{-\frac{1}{2}}\sin(x) + x^{\frac{1}{2}}\cos(x)
g
′
(
x
)
=
2
1
x
−
2
1
sin
(
x
)
+
x
2
1
cos
(
x
)
More problems from Domain and range of square root functions: equations
Question
Solve the following equation for
y
y
y
.
\newline
2
y
+
5
=
15
−
2
y
y
=
\begin{array}{l} 2 y+5=\sqrt{15-2 y} \\ y= \\ \end{array}
2
y
+
5
=
15
−
2
y
y
=
Get tutor help
Posted 1 year ago
Question
Solve the following equation for
w
w
w
.
\newline
5
−
w
4
=
w
+
8
w
=
\begin{array}{l} \sqrt{5-\frac{w}{4}}=\sqrt{w+8} \\ w= \end{array}
5
−
4
w
=
w
+
8
w
=
Get tutor help
Posted 1 year ago
Question
Solve the following equation for
z
z
z
.
\newline
4
z
+
9
=
z
+
1
z
=
□
\begin{array}{l} \quad \sqrt{4 z+9}=z+1 \\ z=\square \end{array}
4
z
+
9
=
z
+
1
z
=
□
Get tutor help
Posted 1 year ago
Question
Solve the following equation for
y
y
y
.
\newline
2
y
−
3
=
3
y
2
−
10
x
y
=
□
\begin{array}{l} 2 y-3=\sqrt{3 y^{2}-10 x} \\ y=\square \end{array}
2
y
−
3
=
3
y
2
−
10
x
y
=
□
Get tutor help
Posted 1 year ago
Question
Solve the following equation for
x
x
x
.
\newline
5
x
−
4
=
x
−
2
x
=
\begin{array}{l} \sqrt{5 x-4}=x-2 \\ x= \end{array}
5
x
−
4
=
x
−
2
x
=
Get tutor help
Posted 1 year ago
Question
lim
x
→
3
2
x
−
5
−
1
x
−
3
=
\lim _{x \rightarrow 3} \frac{\sqrt{2 x-5}-1}{x-3}=
lim
x
→
3
x
−
3
2
x
−
5
−
1
=
Get tutor help
Posted 11 months ago
Question
lim
x
→
−
4
x
+
4
3
x
+
13
−
1
=
\lim _{x \rightarrow-4} \frac{x+4}{\sqrt{3 x+13}-1}=
lim
x
→
−
4
3
x
+
13
−
1
x
+
4
=
Get tutor help
Posted 11 months ago
Question
lim
x
→
−
1
x
+
1
x
+
5
−
2
=
\lim _{x \rightarrow-1} \frac{x+1}{\sqrt{x+5}-2}=
lim
x
→
−
1
x
+
5
−
2
x
+
1
=
Get tutor help
Posted 11 months ago
Question
Let
f
(
x
)
=
x
+
9
f(x)=\sqrt{x+9}
f
(
x
)
=
x
+
9
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
[
0
,
16
]
[0,16]
[
0
,
16
]
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
16
16
16
\newline
(B)
43
43
43
\newline
(C)
55
55
55
\newline
(D)
7
7
7
Get tutor help
Posted 11 months ago
Question
Let
g
(
x
)
=
5
x
−
1
g(x)=\sqrt{5 x-1}
g
(
x
)
=
5
x
−
1
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
g
g
g
on the interval
[
1
,
10
]
[1,10]
[
1
,
10
]
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
.
25
25
25
\newline
(B)
4
4
4
.
25
25
25
\newline
(C)
6
6
6
.
5
5
5
\newline
(D)
8
8
8
Get tutor help
Posted 11 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant