Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(sin(x))/(e^(x)).
Find 
g^(')(x).
Choose 1 answer:
(A) 
cos(x)-e^(x)
(B) 
e^(x)(cos(x)-sin(x))
(C) 
(cos(x))/(e^(x))
(D) 
(cos(x)-sin(x))/(e^(x))

Let g(x)=sin(x)ex g(x)=\frac{\sin (x)}{e^{x}} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) cos(x)ex \cos (x)-e^{x} \newline(B) ex(cos(x)sin(x)) e^{x}(\cos (x)-\sin (x)) \newline(C) cos(x)ex \frac{\cos (x)}{e^{x}} \newline(D) cos(x)sin(x)ex \frac{\cos (x)-\sin (x)}{e^{x}}

Full solution

Q. Let g(x)=sin(x)ex g(x)=\frac{\sin (x)}{e^{x}} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) cos(x)ex \cos (x)-e^{x} \newline(B) ex(cos(x)sin(x)) e^{x}(\cos (x)-\sin (x)) \newline(C) cos(x)ex \frac{\cos (x)}{e^{x}} \newline(D) cos(x)sin(x)ex \frac{\cos (x)-\sin (x)}{e^{x}}
  1. Apply Quotient Rule: Apply the quotient rule to find the derivative of g(x)=sin(x)exg(x) = \frac{\sin(x)}{e^{x}}. The quotient rule states that if you have a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}. Here, f(x)=sin(x)f(x) = \sin(x) and g(x)=exg(x) = e^{x}.
  2. Find f(x)f'(x): Find the derivative of f(x)=sin(x)f(x) = \sin(x), which is f(x)=cos(x)f'(x) = \cos(x).
  3. Find g(x)g'(x): Find the derivative of g(x)=exg(x) = e^{x}, which is g(x)=exg'(x) = e^{x}.
  4. Apply Quotient Rule: Apply the quotient rule using the derivatives from steps 22 and 33.\newlineg(x)=cos(x)exsin(x)ex(ex)2g'(x) = \frac{\cos(x)e^{x} - \sin(x)e^{x}}{(e^{x})^2}.
  5. Simplify Expression: Simplify the expression by factoring out exe^{x} from the numerator and canceling one exe^{x} from the numerator and denominator.\newlineg(x)=ex(cos(x)sin(x))exexg'(x) = \frac{e^{x}(\cos(x) - \sin(x))}{e^{x}e^{x}}.\newlineg(x)=cos(x)sin(x)exg'(x) = \frac{\cos(x) - \sin(x)}{e^{x}}.
  6. Match Correct Answer: Match the simplified derivative with the given answer choices.\newlineThe correct answer is (D) (cos(x)sin(x))/(ex)(\cos(x) - \sin(x))/(e^{x}).

More problems from Find derivatives of using multiple formulae