Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=e^(tan(x)).
Find 
g^(')(x).
Choose 1 answer:
(A) 
e^(tan(x))
(B) 
e^(tan(x))sec^(2)(x)
(C) 
tan(x)e^(tan(x)-1)
(D) 
e^(sec^(2)(x))

Let g(x)=etan(x) g(x)=e^{\tan (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) etan(x) e^{\tan (x)} \newline(B) etan(x)sec2(x) e^{\tan (x)} \sec ^{2}(x) \newline(C) tan(x)etan(x)1 \tan (x) e^{\tan (x)-1} \newline(D) esec2(x) e^{\sec ^{2}(x)}

Full solution

Q. Let g(x)=etan(x) g(x)=e^{\tan (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) etan(x) e^{\tan (x)} \newline(B) etan(x)sec2(x) e^{\tan (x)} \sec ^{2}(x) \newline(C) tan(x)etan(x)1 \tan (x) e^{\tan (x)-1} \newline(D) esec2(x) e^{\sec ^{2}(x)}
  1. Apply Chain Rule: Apply the chain rule to differentiate g(x)=etan(x)g(x) = e^{\tan(x)}.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Identify Functions: Identify the outer and inner functions.\newlineThe outer function is eue^u, where uu is the inner function.\newlineThe inner function is tan(x)\tan(x).
  3. Differentiate Outer Function: Differentiate the outer function with respect to the inner function.\newlineThe derivative of eue^u with respect to uu is eue^u.\newlineSo, (ddu)(eu)=eu(\frac{d}{du})(e^u) = e^u.
  4. Differentiate Inner Function: Differentiate the inner function with respect to xx. The derivative of tan(x)\tan(x) with respect to xx is sec2(x)\sec^2(x). So, (ddx)(tan(x))=sec2(x)(\frac{d}{dx})(\tan(x)) = \sec^2(x).
  5. Apply Chain Rule Again: Apply the chain rule using the derivatives from steps 33 and 44.\newlineg(x)=ddu(eu)ddx(tan(x))g'(x) = \frac{d}{du}(e^u) \cdot \frac{d}{dx}(\tan(x))\newlineg(x)=etan(x)sec2(x)g'(x) = e^{\tan(x)} \cdot \sec^2(x).
  6. Match Answer Choices: Match the result with the given answer choices.\newlineThe correct answer is (B) etan(x)sec2(x)e^{\tan(x)}\sec^{2}(x).

More problems from Find derivatives of using multiple formulae