Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=e^(tan(x)).
Find 
g^(')(x).
Choose 1 answer:
(A) 
e^(sec^(2)(x))
(B) 
e^(tan(x))
(C) 
e^(tan(x))sec^(2)(x)
(D) 
tan(x)e^(tan(x)-1)

Let g(x)=etan(x) g(x)=e^{\tan (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) esec2(x) e^{\sec ^{2}(x)} \newline(B) etan(x) e^{\tan (x)} \newline(C) etan(x)sec2(x) e^{\tan (x)} \sec ^{2}(x) \newline(D) tan(x)etan(x)1 \tan (x) e^{\tan (x)-1}

Full solution

Q. Let g(x)=etan(x) g(x)=e^{\tan (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) esec2(x) e^{\sec ^{2}(x)} \newline(B) etan(x) e^{\tan (x)} \newline(C) etan(x)sec2(x) e^{\tan (x)} \sec ^{2}(x) \newline(D) tan(x)etan(x)1 \tan (x) e^{\tan (x)-1}
  1. Identify Functions: We need to find the derivative of the function g(x)=etan(x)g(x) = e^{\tan(x)}. To do this, we will use the chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Derivative of Outer Function: First, let's identify the outer and inner functions. The outer function is eue^u, where uu is the inner function. The inner function is tan(x)\tan(x).
  3. Derivative of Inner Function: Now, we take the derivative of the outer function with respect to the inner function. The derivative of eue^u with respect to uu is eue^u. \newlineddu(eu)=eu\frac{d}{du}(e^u) = e^u
  4. Apply Chain Rule: Next, we take the derivative of the inner function tan(x)\tan(x) with respect to xx. The derivative of tan(x)\tan(x) is sec2(x)\sec^2(x).\newline(ddx)(tan(x))=sec2(x)(\frac{d}{dx})(\tan(x)) = \sec^2(x)
  5. Match with Options: Applying the chain rule, we multiply the derivative of the outer function by the derivative of the inner function.\newlineg(x)=ddu(eu)ddx(tan(x))g'(x) = \frac{d}{du}(e^u) \cdot \frac{d}{dx}(\tan(x))\newlineg(x)=etan(x)sec2(x)g'(x) = e^{\tan(x)} \cdot \sec^2(x)
  6. Match with Options: Applying the chain rule, we multiply the derivative of the outer function by the derivative of the inner function.\newlineg(x)=ddu(eu)ddx(tan(x))g'(x) = \frac{d}{du}(e^u) \cdot \frac{d}{dx}(\tan(x))\newlineg(x)=etan(x)sec2(x)g'(x) = e^{\tan(x)} \cdot \sec^2(x)We can now match our result with the given options. The correct answer is:\newlineg(x)=etan(x)sec2(x)g'(x) = e^{\tan(x)} \cdot \sec^2(x)\newlineThis corresponds to option (C).

More problems from Find derivatives of using multiple formulae