Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(cos(x))/(sin(x)).
Find 
g^(')(x).
Choose 1 answer:
(A) 
(sin^(2)(x)-cos^(2)(x))/(sin^(2)(x))
(B) 
(1)/(sin^(2)(x))
(C) 
-(1)/(sin^(2)(x))
(D) 
(cos^(2)(x)-sin^(2)(x))/(sin^(2)(x))

Let g(x)=cos(x)sin(x) g(x)=\frac{\cos (x)}{\sin (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) sin2(x)cos2(x)sin2(x) \frac{\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)} \newline(B) 1sin2(x) \frac{1}{\sin ^{2}(x)} \newline(C) 1sin2(x) -\frac{1}{\sin ^{2}(x)} \newline(D) cos2(x)sin2(x)sin2(x) \frac{\cos ^{2}(x)-\sin ^{2}(x)}{\sin ^{2}(x)}

Full solution

Q. Let g(x)=cos(x)sin(x) g(x)=\frac{\cos (x)}{\sin (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) sin2(x)cos2(x)sin2(x) \frac{\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)} \newline(B) 1sin2(x) \frac{1}{\sin ^{2}(x)} \newline(C) 1sin2(x) -\frac{1}{\sin ^{2}(x)} \newline(D) cos2(x)sin2(x)sin2(x) \frac{\cos ^{2}(x)-\sin ^{2}(x)}{\sin ^{2}(x)}
  1. Recognize Quotient Rule: Recognize that g(x)=cos(x)sin(x)g(x) = \frac{\cos(x)}{\sin(x)} is a quotient of two functions, so we will use the quotient rule to find its derivative. The quotient rule states that if h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.
  2. Identify Functions: Identify the functions f(x)f(x) and g(x)g(x) where f(x)=cos(x)f(x) = \cos(x) and g(x)=sin(x)g(x) = \sin(x). We will need to find the derivatives f(x)f'(x) and g(x)g'(x).
  3. Find f(x)f'(x): Find the derivative of f(x)=cos(x)f(x) = \cos(x). The derivative of cos(x)\cos(x) with respect to xx is sin(x)-\sin(x). So, f(x)=sin(x)f'(x) = -\sin(x).
  4. Find g(x)g'(x): Find the derivative of g(x)=sin(x)g(x) = \sin(x). The derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x). So, g(x)=cos(x)g'(x) = \cos(x).
  5. Apply Quotient Rule: Apply the quotient rule. Using the derivatives from steps 33 and 44, we get: g(x)=sin(x)sin(x)cos(x)cos(x)(sin(x))2g'(x) = \frac{-\sin(x) \cdot \sin(x) - \cos(x) \cdot \cos(x)}{(\sin(x))^2}.
  6. Simplify Expression: Simplify the expression. We can use the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 to simplify the numerator:\newlineg(x)=(sin2(x)cos2(x))/(sin(x))2=(sin2(x)+cos2(x))/(sin(x))2=(1)/(sin(x))2.g'(x) = (-\sin^2(x) - \cos^2(x)) / (\sin(x))^2 = -(\sin^2(x) + \cos^2(x)) / (\sin(x))^2 = -(1) / (\sin(x))^2.
  7. Recognize Final Answer: Recognize that (1)/(sin(x))2-(1) / (\sin(x))^2 is the same as (1)/(sin2(x))-(1) / (\sin^2(x)), which matches answer choice (C)(C).

More problems from Find derivatives of using multiple formulae