Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(cos(x))/(sin(x)).
Find 
g^(')(x).
Choose 1 answer:
(A) 
-(1)/(sin^(2)(x))
(B) 
(sin^(2)(x)-cos^(2)(x))/(sin^(2)(x))
(C) 
(1)/(sin^(2)(x))
(D) 
(cos^(2)(x)-sin^(2)(x))/(sin^(2)(x))

Let g(x)=cos(x)sin(x) g(x)=\frac{\cos (x)}{\sin (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1sin2(x) -\frac{1}{\sin ^{2}(x)} \newline(B) sin2(x)cos2(x)sin2(x) \frac{\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)} \newline(C) 1sin2(x) \frac{1}{\sin ^{2}(x)} \newline(D) cos2(x)sin2(x)sin2(x) \frac{\cos ^{2}(x)-\sin ^{2}(x)}{\sin ^{2}(x)}

Full solution

Q. Let g(x)=cos(x)sin(x) g(x)=\frac{\cos (x)}{\sin (x)} .\newlineFind g(x) g^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1sin2(x) -\frac{1}{\sin ^{2}(x)} \newline(B) sin2(x)cos2(x)sin2(x) \frac{\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)} \newline(C) 1sin2(x) \frac{1}{\sin ^{2}(x)} \newline(D) cos2(x)sin2(x)sin2(x) \frac{\cos ^{2}(x)-\sin ^{2}(x)}{\sin ^{2}(x)}
  1. Recognize Function Type: Recognize that g(x)=cos(x)sin(x)g(x) = \frac{\cos(x)}{\sin(x)} is a quotient of two functions, where the numerator is cos(x)\cos(x) and the denominator is sin(x)\sin(x). To find the derivative g(x)g'(x), we will use the quotient rule.
  2. Apply Quotient Rule: The quotient rule states that if we have a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then its derivative h(x)h'(x) is given by h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}. Here, f(x)=cos(x)f(x) = \cos(x) and g(x)=sin(x)g(x) = \sin(x).
  3. Find Derivative of Cos(x): Find the derivative of the numerator f(x)=cos(x)f(x) = \cos(x). The derivative of cos(x)\cos(x) with respect to xx is sin(x)-\sin(x).
  4. Find Derivative of Sin(x): Find the derivative of the denominator g(x)=sin(x)g(x) = \sin(x). The derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x).
  5. Apply Quotient Rule: Apply the quotient rule using the derivatives from steps 33 and 44. So, g(x)=sin(x)sin(x)cos(x)cos(x)(sin(x))2g'(x) = \frac{-\sin(x) \cdot \sin(x) - \cos(x) \cdot \cos(x)}{(\sin(x))^2}.
  6. Simplify Expression: Simplify the expression for g(x)g'(x). We have g(x)=sin2(x)cos2(x)sin2(x)g'(x) = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)}.
  7. Apply Pythagorean Identity: Recognize that sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1, which is the Pythagorean identity. Therefore, sin2(x)cos2(x)=1-\sin^2(x) - \cos^2(x) = -1.
  8. Substitute Identity: Substitute the Pythagorean identity into the expression for g(x)g'(x) to get g(x)=1sin2(x)g'(x) = -\frac{1}{\sin^2(x)}.
  9. Final Simplified Form: The final simplified form of g(x)g'(x) is g(x)=1sin2(x)g'(x) = -\frac{1}{\sin^2(x)}, which corresponds to answer choice (A).

More problems from Find derivatives of using multiple formulae