Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(4)=16 and 
g^(')(4)=12.
Let 
h be the function 
h(x)=sqrtx.

Let 
H be a function defined as 
H(x)=(g(x))/(h(x)).

H^(')(4)=

- Let g g be a function such that g(4)=16 g(4)=16 and g(4)=12 g^{\prime}(4)=12 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet H H be a function defined as H(x)=g(x)h(x) H(x)=\frac{g(x)}{h(x)} .\newlineH(4)= H^{\prime}(4)=

Full solution

Q. - Let g g be a function such that g(4)=16 g(4)=16 and g(4)=12 g^{\prime}(4)=12 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet H H be a function defined as H(x)=g(x)h(x) H(x)=\frac{g(x)}{h(x)} .\newlineH(4)= H^{\prime}(4)=
  1. Write H(x)H(x) function: First, let's write down the function H(x)H(x) using the given functions g(x)g(x) and h(x)h(x): H(x)=g(x)h(x)H(x) = \frac{g(x)}{h(x)}.
  2. Find derivative H(x)H'(x): Now, we need to find the derivative of H(x)H(x), which is H(x)H'(x). We'll use the quotient rule for derivatives, which is (fg)=fgfgg2(\frac{f}{g})' = \frac{f'g - fg'}{g^2}, where ff is the numerator and gg is the denominator.
  3. Derivatives of g(x)g(x) and h(x)h(x): Let's find the derivatives of g(x)g(x) and h(x)h(x). We know g(4)=12g'(4) = 12. For h(x)=xh(x) = \sqrt{x}, the derivative h(x)h'(x) is 1/(2x)1/(2\sqrt{x}). So h(4)=1/(24)=1/4h'(4) = 1/(2\sqrt{4}) = 1/4.
  4. Apply quotient rule: Now we apply the quotient rule. H(x)=g(x)h(x)g(x)h(x)(h(x))2H'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{(h(x))^2}.
  5. Plug in x=4x=4: Let's plug in the values for x=4x=4. H(4)=g(4)h(4)g(4)h(4)(h(4))2H'(4) = \frac{g'(4) \cdot h(4) - g(4) \cdot h'(4)}{(h(4))^2}.
  6. Substitute known values: Substitute the known values: H(4)=(12×416×14)/(4)2H'(4) = (12 \times \sqrt{4} - 16 \times \frac{1}{4}) / (\sqrt{4})^2.
  7. Calculate values: Calculate the values: H(4)=(12×216×14)4.H'(4) = \frac{(12 \times 2 - 16 \times \frac{1}{4})}{4}.
  8. Simplify expression: Simplify the expression: H(4)=2444.H'(4) = \frac{24 - 4}{4}.
  9. Finish calculation: Finish the calculation: H(4)=204.H'(4) = \frac{20}{4}.
  10. Final result: So, H(4)=5H'(4) = 5.

More problems from Find derivatives using logarithmic differentiation