Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(-1)=5 and 
g^(')(-1)=6.
Let 
h be the function 
h(x)=2x^(2).

Evaluate 
(d)/(dx)[(g(x))/(h(x))] at 
x=-1.

- Let g g be a function such that g(1)=5 g(-1)=5 and g(1)=6 g^{\prime}(-1)=6 .\newline- Let h h be the function h(x)=2x2 h(x)=2 x^{2} .\newlineEvaluate ddx[g(x)h(x)] \frac{d}{d x}\left[\frac{g(x)}{h(x)}\right] at x=1 x=-1 .

Full solution

Q. - Let g g be a function such that g(1)=5 g(-1)=5 and g(1)=6 g^{\prime}(-1)=6 .\newline- Let h h be the function h(x)=2x2 h(x)=2 x^{2} .\newlineEvaluate ddx[g(x)h(x)] \frac{d}{d x}\left[\frac{g(x)}{h(x)}\right] at x=1 x=-1 .
  1. Apply Quotient Rule: First, we need to apply the quotient rule for differentiation, which is given by:\newline(ddx)[u(x)v(x)]=v(x)u(x)u(x)v(x)(v(x))2(\frac{d}{dx})[\frac{u(x)}{v(x)}] = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{(v(x))^2}\newlineHere, u(x)=g(x)u(x) = g(x) and v(x)=h(x)v(x) = h(x).
  2. Find Derivatives: We need to find the derivatives of g(x)g(x) and h(x)h(x). We are given g(1)=6g'(-1) = 6, so we already have the derivative of g(x)g(x) at x=1x = -1. For h(x)h(x), we need to differentiate h(x)=2x2h(x) = 2x^2.\newlineThe derivative of h(x)h(x) with respect to xx is h(x)=ddx[2x2]=4xh'(x) = \frac{d}{dx}[2x^2] = 4x.
  3. Evaluate Derivatives: Now we evaluate h(x)h'(x) at x=1x = -1 to get h(1)h'(-1). h(1)=4(1)=4h'(-1) = 4*(-1) = -4.
  4. Apply Quotient Rule: Next, we need to evaluate g(x)g(x) and h(x)h(x) at x=1x = -1. We are given g(1)=5g(-1) = 5, and we can calculate h(1)=2(1)2=21=2h(-1) = 2*(-1)^2 = 2*1 = 2.
  5. Substitute Values: Now we have all the values we need to apply the quotient rule:\newlineg(1)=6g'(-1) = 6, g(1)=5g(-1) = 5, h(1)=4h'(-1) = -4, and h(1)=2h(-1) = 2.\newlineUsing the quotient rule:\newline(d/dx)[g(x)/h(x)](d/dx)[g(x)/h(x)] at x=1x = -1 = (h(1)g(1)g(1)h(1))/(h(1))2(h(-1) \cdot g'(-1) - g(-1) \cdot h'(-1)) / (h(-1))^2
  6. Perform Calculations: Substitute the known values into the quotient rule formula: (ddx)[g(x)h(x)](\frac{d}{dx})[\frac{g(x)}{h(x)}] at x=1x = -1 = (2×65×4)(2)2\frac{(2 \times 6 - 5 \times -4)}{(2)^2}
  7. Perform Calculations: Substitute the known values into the quotient rule formula:\newline(d/dx)[g(x)/h(x)](d/dx)[g(x)/h(x)] at x=1x = -1 = (2×65×4)/(2)2(2 \times 6 - 5 \times -4) / (2)^2Now, perform the calculations:\newline(d/dx)[g(x)/h(x)](d/dx)[g(x)/h(x)] at x=1x = -1 = (12+20)/4(12 + 20) / 4\newline(d/dx)[g(x)/h(x)](d/dx)[g(x)/h(x)] at x=1x = -1 = 32/432 / 4\newline(d/dx)[g(x)/h(x)](d/dx)[g(x)/h(x)] at x=1x = -1 = x=1x = -111

More problems from Write variable expressions for arithmetic sequences