Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(1)=-2 and 
g^(')(1)=7.
Let 
h be the function 
h(x)=sqrtx.

Let 
F be a function defined as 
F(x)=g(x)*h(x).

F^(')(1)=

- Let g g be a function such that g(1)=2 g(1)=-2 and g(1)=7 g^{\prime}(1)=7 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet F F be a function defined as F(x)=g(x)h(x) F(x)=g(x) \cdot h(x) .\newlineF(1)= F^{\prime}(1)=

Full solution

Q. - Let g g be a function such that g(1)=2 g(1)=-2 and g(1)=7 g^{\prime}(1)=7 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet F F be a function defined as F(x)=g(x)h(x) F(x)=g(x) \cdot h(x) .\newlineF(1)= F^{\prime}(1)=
  1. Apply Product Rule: Use the product rule for differentiation, which states that (fg)=fg+fg (f*g)' = f'*g + f*g' .
  2. Differentiate h(x)h(x): Differentiate h(x)=xh(x) = \sqrt{x} to get h(x)h'(x). h(x)=12xh'(x) = \frac{1}{2\sqrt{x}}.
  3. Evaluate h(1)h'(1): Evaluate h(1)h'(1) by substituting xx with 11. h(1)=121=12h'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}.
  4. Use Product Rule Formula: Now, use the values g(1)=2g(1)=-2, g(1)=7g'(1)=7, and h(1)=12h'(1)=\frac{1}{2} in the product rule formula.
  5. Apply Product Rule: Apply the product rule: F(x)=g(x)h(x)+g(x)h(x)F'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x).
  6. Substitute xx in F(x)F'(x): Substitute xx with 11 to find F(1)F'(1): F(1)=g(1)h(1)+g(1)h(1)F'(1) = g'(1)\cdot h(1) + g(1)\cdot h'(1).
  7. Plug in Known Values: Plug in the known values: F(1)=71+(2)(12)F'(1) = 7\sqrt{1} + (-2)\left(\frac{1}{2}\right).
  8. Calculate F(1)F'(1): Calculate the values: F(1)=71+(2)(12)=71F'(1) = 7\cdot1 + (-2)\cdot(\frac{1}{2}) = 7 - 1.
  9. Finish Calculation: Finish the calculation: F(1)=71=6F'(1) = 7 - 1 = 6.

More problems from Evaluate exponential functions