Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

20*7^(3y)=5
What is the solution of the equation?
Round your answer, if necessary, to the nearest thousandth.

y~~

2073y=5 20 \cdot 7^{3 y}=5 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newliney y \approx

Full solution

Q. 2073y=5 20 \cdot 7^{3 y}=5 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newliney y \approx
  1. Isolate exponential term: Isolate the exponential term.\newlineDivide both sides of the equation by 2020 to isolate the 73y7^{3y} term.\newline2073y=520 \cdot 7^{3y} = 5\newline73y=5207^{3y} = \frac{5}{20}\newline73y=147^{3y} = \frac{1}{4}
  2. Divide by 2020: Apply the logarithm to both sides of the equation.\newlineTo solve for yy, we can use the natural logarithm (ln\ln) or the common logarithm (log\log). Here, we'll use the natural logarithm.\newlineln(73y)=ln(14)\ln(7^{3y}) = \ln(\frac{1}{4})
  3. Apply logarithm: Use the power property of logarithms.\newlineThe power property of logarithms states that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a). We apply this property to simplify the left side of the equation.\newline3yln(7)=ln(14)3y \cdot \ln(7) = \ln\left(\frac{1}{4}\right)
  4. Use power property: Isolate yy.\newlineDivide both sides of the equation by 3ln(7)3\ln(7) to solve for yy.\newliney=ln(14)3ln(7)y = \frac{\ln(\frac{1}{4})}{3\ln(7)}
  5. Isolate y: Calculate the value of y using a calculator.\newliney = ln(14)3ln(7) \frac{\ln(\frac{1}{4})}{3 \cdot \ln(7)} \newliney \approx 0.31739380531.945910149 \frac{-0.317393805}{3 \cdot 1.945910149} \newliney \approx 0.3173938055.837730447 \frac{-0.317393805}{5.837730447} \newliney \approx 0.054355248 -0.054355248 \newlineRound the answer to the nearest thousandth.\newliney \approx 0.054 -0.054

More problems from Solve exponential equations using common logarithms