Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=x^((3)/(2)).

f^(')(x)=

Let f(x)=x32 f(x)=x^{\frac{3}{2}} .\newlinef(x)= f^{\prime}(x)=

Full solution

Q. Let f(x)=x32 f(x)=x^{\frac{3}{2}} .\newlinef(x)= f^{\prime}(x)=
  1. Identify Function & Operation: Identify the function and the operation to be performed.\newlineWe have the function f(x)=x(3/2)f(x) = x^{(3/2)} and we need to find its derivative, which is denoted by f(x)f'(x).
  2. Apply Power Rule: Apply the power rule for differentiation.\newlineThe power rule states that if f(x)=xnf(x) = x^n, then f(x)=nx(n1)f'(x) = n\cdot x^{(n-1)}. Here, n=32n = \frac{3}{2}.
  3. Differentiate Using Rule: Differentiate the function using the power rule.\newlinef(x)=32x(321)f'(x) = \frac{3}{2} \cdot x^{\left(\frac{3}{2} - 1\right)}
  4. Simplify Exponent: Simplify the exponent. f(x)=32x12f'(x) = \frac{3}{2} \cdot x^{\frac{1}{2}}
  5. Write Final Derivative: Write the final expression for the derivative. f(x)=32xf'(x) = \frac{3}{2} \cdot \sqrt{x}

More problems from Write variable expressions for arithmetic sequences