Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(x^(2))/(ln(x)).
Find 
f^(')(x).
Choose 1 answer:
(A) 
(2x ln(x)-x)/((ln(x))^(2))
(B) 
2x ln(x)+x
(C) 
2x-(1)/(x)
(D) 
2x^(2)

Let f(x)=x2ln(x) f(x)=\frac{x^{2}}{\ln (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 2xln(x)x(ln(x))2 \frac{2 x \ln (x)-x}{(\ln (x))^{2}} \newline(B) 2xln(x)+x 2 x \ln (x)+x \newline(C) 2x1x 2 x-\frac{1}{x} \newline(D) 2x2 2 x^{2}

Full solution

Q. Let f(x)=x2ln(x) f(x)=\frac{x^{2}}{\ln (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 2xln(x)x(ln(x))2 \frac{2 x \ln (x)-x}{(\ln (x))^{2}} \newline(B) 2xln(x)+x 2 x \ln (x)+x \newline(C) 2x1x 2 x-\frac{1}{x} \newline(D) 2x2 2 x^{2}
  1. Use Quotient Rule: To find the derivative of the function f(x)=x2ln(x)f(x) = \frac{x^2}{\ln(x)}, we will use the quotient rule, which states that if we have a function that is the quotient of two functions, u(x)v(x)\frac{u(x)}{v(x)}, then its derivative is given by v(x)u(x)u(x)v(x)(v(x))2\frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=x2u(x) = x^2 and v(x)=ln(x)v(x) = \ln(x).
  2. Find u(x)u(x): First, we need to find the derivative of u(x)=x2u(x) = x^2. The derivative of x2x^2 with respect to xx is 2x2x.
  3. Find v(x)v(x): Next, we need to find the derivative of v(x)=ln(x)v(x) = \ln(x). The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  4. Apply Quotient Rule: Now we apply the quotient rule. The derivative of f(x)f(x) is given by:\newlinef(x)=(ln(x))(2x)(x2)(1x)(ln(x))2f'(x) = \frac{(\ln(x))(2x) - (x^2)(\frac{1}{x})}{(\ln(x))^2}
  5. Simplify Numerator: Simplify the expression by performing the multiplication and division in the numerator: f(x)=2xln(x)x2x(ln(x))2f'(x) = \frac{2x\cdot\ln(x) - \frac{x^2}{x}}{(\ln(x))^2}
  6. Further Simplify: Further simplify the expression by canceling the xx in the term x2x\frac{x^2}{x}:f(x)=2xln(x)x(ln(x))2f'(x) = \frac{2x\cdot\ln(x) - x}{(\ln(x))^2}
  7. Final Derivative: Now we have the derivative in its simplified form:\newlinef(x)=2xln(x)x(ln(x))2f'(x) = \frac{2x\ln(x) - x}{(\ln(x))^2}\newlineThis matches answer choice (A).

More problems from Find derivatives of using multiple formulae