Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(x^(2))/(ln(x)).
Find 
f^(')(x).
Choose 1 answer:
(A) 
2x^(2)
(B) 
(2x ln(x)-x)/((ln(x))^(2))
(C) 
2x ln(x)+x
(D) 
2x-(1)/(x)

Let f(x)=x2ln(x) f(x)=\frac{x^{2}}{\ln (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 2x2 2 x^{2} \newline(B) 2xln(x)x(ln(x))2 \frac{2 x \ln (x)-x}{(\ln (x))^{2}} \newline(C) 2xln(x)+x 2 x \ln (x)+x \newline(D) 2x1x 2 x-\frac{1}{x}

Full solution

Q. Let f(x)=x2ln(x) f(x)=\frac{x^{2}}{\ln (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 2x2 2 x^{2} \newline(B) 2xln(x)x(ln(x))2 \frac{2 x \ln (x)-x}{(\ln (x))^{2}} \newline(C) 2xln(x)+x 2 x \ln (x)+x \newline(D) 2x1x 2 x-\frac{1}{x}
  1. Use Quotient Rule: To find the derivative of the function f(x)=x2ln(x)f(x) = \frac{x^2}{\ln(x)}, we will use the quotient rule, which states that if we have a function g(x)=u(x)v(x)g(x) = \frac{u(x)}{v(x)}, then g(x)=u(x)v(x)u(x)v(x)(v(x))2g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=x2u(x) = x^2 and v(x)=ln(x)v(x) = \ln(x).
  2. Find u(x)u'(x): First, we find the derivative of u(x)=x2u(x) = x^2. The derivative of x2x^2 with respect to xx is 2x2x.
  3. Find v(x)v'(x): Next, we find the derivative of v(x)=ln(x)v(x) = \ln(x). The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  4. Apply Quotient Rule: Now we apply the quotient rule. We have u(x)=2xu'(x) = 2x and v(x)=1xv'(x) = \frac{1}{x}. Plugging these into the quotient rule formula, we get:\newlinef(x)=(2xln(x)x2(1x))(ln(x))2.f'(x) = \frac{(2x \cdot \ln(x) - x^2 \cdot (\frac{1}{x}))}{(\ln(x))^2}.
  5. Simplify Numerator: Simplify the expression inside the numerator of the derivative: f(x)=2xln(x)x(ln(x))2f'(x) = \frac{2x \cdot \ln(x) - x}{(\ln(x))^2}.
  6. Match Answer Choice: We can see that the expression (2xln(x)x)/(ln(x))2(2x \cdot \ln(x) - x) / (\ln(x))^2 matches answer choice (B), which is (2xln(x)x)/(ln(x))2(2x \ln(x) - x) / (\ln(x))^2.

More problems from Sum of finite series starts from 1