Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=sin(x)x^(-2).
Find 
f^(')(x).
Choose 1 answer:
(A) 
(cos(x))/(x^(2))-(2sin(x))/(x^(3))
(B) 
(cos(x))/(x^(2))-(2sin(x))/(x)
(C) 
(sin(x))/(x^(2))-(2cos(x))/(x)
(D) 
(sin(x))/(x^(2))-(2cos(x))/(x^(3))

Let f(x)=sin(x)x2 f(x)=\sin (x) x^{-2} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) cos(x)x22sin(x)x3 \frac{\cos (x)}{x^{2}}-\frac{2 \sin (x)}{x^{3}} \newline(B) cos(x)x22sin(x)x \frac{\cos (x)}{x^{2}}-\frac{2 \sin (x)}{x} \newline(C) sin(x)x22cos(x)x \frac{\sin (x)}{x^{2}}-\frac{2 \cos (x)}{x} \newline(D) sin(x)x22cos(x)x3 \frac{\sin (x)}{x^{2}}-\frac{2 \cos (x)}{x^{3}}

Full solution

Q. Let f(x)=sin(x)x2 f(x)=\sin (x) x^{-2} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) cos(x)x22sin(x)x3 \frac{\cos (x)}{x^{2}}-\frac{2 \sin (x)}{x^{3}} \newline(B) cos(x)x22sin(x)x \frac{\cos (x)}{x^{2}}-\frac{2 \sin (x)}{x} \newline(C) sin(x)x22cos(x)x \frac{\sin (x)}{x^{2}}-\frac{2 \cos (x)}{x} \newline(D) sin(x)x22cos(x)x3 \frac{\sin (x)}{x^{2}}-\frac{2 \cos (x)}{x^{3}}
  1. Apply Product Rule: Use the product rule for differentiation: (ddx)[u(x)v(x)]=u(x)v(x)+u(x)v(x)(\frac{d}{dx})[u(x)v(x)] = u'(x)v(x) + u(x)v'(x), where u(x)=sin(x)u(x) = \sin(x) and v(x)=x2v(x) = x^{-2}.
  2. Differentiate sin(x)\sin(x): Differentiate u(x)=sin(x)u(x) = \sin(x). The derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x), so u(x)=cos(x)u'(x) = \cos(x).
  3. Differentiate x2x^{-2}: Differentiate v(x)=x2v(x) = x^{-2}. The derivative of x2x^{-2} with respect to xx is 2x3-2x^{-3}, so v(x)=2x3v'(x) = -2x^{-3}.
  4. Apply Product Rule: Apply the product rule: f(x)=cos(x)x2+sin(x)(2x3)f'(x) = \cos(x)\cdot x^{-2} + \sin(x)\cdot (-2x^{-3}).
  5. Simplify Expression: Simplify the expression: f(x)=cos(x)x22sin(x)x3f'(x) = \frac{\cos(x)}{x^2} - \frac{2\sin(x)}{x^3}.

More problems from Find derivatives of using multiple formulae