Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=cos(x)x^(-2).

f^(')(x)=

Let f(x)=cos(x)x2 f(x)=\cos (x) x^{-2} .\newlinef(x)= f^{\prime}(x)=

Full solution

Q. Let f(x)=cos(x)x2 f(x)=\cos (x) x^{-2} .\newlinef(x)= f^{\prime}(x)=
  1. Identify components: Identify the function components to apply the product rule: f(x)=g(x)h(x)f(x) = g(x)h(x), where g(x)=cos(x)g(x) = \cos(x) and h(x)=x2h(x) = x^{-2}.
  2. Apply product rule: Apply the product rule: f(x)=g(x)h(x)+g(x)h(x)f'(x) = g'(x)h(x) + g(x)h'(x).
  3. Calculate g(x)g'(x): Calculate g(x)g'(x): g(x)=sin(x)g'(x) = -\sin(x).
  4. Calculate h(x)h'(x): Calculate h(x)h'(x): h(x)=2x3h'(x) = -2x^{-3}.
  5. Plug in values: Plug in g(x)g'(x) and h(x)h'(x) into the product rule: f(x)=(sin(x))(x2)+(cos(x))(2x3)f'(x) = (-\sin(x))(x^{-2}) + (\cos(x))(-2x^{-3}).
  6. Simplify expression: Simplify the expression: f(x)=sin(x)x22cos(x)x3f'(x) = -\frac{\sin(x)}{x^2} - \frac{2\cos(x)}{x^3}.
  7. Combine terms: Combine the terms: f(x)=sin(x)x2cos(x)x3f'(x) = \frac{-\sin(x)x - 2\cos(x)}{x^3}.

More problems from Write variable expressions for arithmetic sequences