Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(3x^(2)+1)/(x+2).
Find 
f^(')(-3).
Choose 1 answer:
(A) 
10
(B) 28
(C) -28
(D) -10

Let f(x)=3x2+1x+2 f(x)=\frac{3 x^{2}+1}{x+2} .\newlineFind f(3) f^{\prime}(-3) .\newlineChoose 11 answer:\newline(A) 10 \mathbf{1 0} \newline(B) 2828\newline(C) 28-28\newline(D) 10-10

Full solution

Q. Let f(x)=3x2+1x+2 f(x)=\frac{3 x^{2}+1}{x+2} .\newlineFind f(3) f^{\prime}(-3) .\newlineChoose 11 answer:\newline(A) 10 \mathbf{1 0} \newline(B) 2828\newline(C) 28-28\newline(D) 10-10
  1. Quotient Rule Application: To find the derivative of the function f(x)=3x2+1x+2f(x) = \frac{3x^2 + 1}{x + 2}, we will use the quotient rule which states that if f(x)=g(x)h(x)f(x) = \frac{g(x)}{h(x)}, then f(x)=g(x)h(x)g(x)h(x)(h(x))2f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}. Here, g(x)=3x2+1g(x) = 3x^2 + 1 and h(x)=x+2h(x) = x + 2.
  2. Derivative of g(x)g(x): First, we find the derivative of g(x)=3x2+1g(x) = 3x^2 + 1. Using the power rule, we get g(x)=ddx(3x2)+ddx(1)=6x+0=6xg'(x) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(1) = 6x + 0 = 6x.
  3. Derivative of h(x)h(x): Next, we find the derivative of h(x)=x+2h(x) = x + 2. The derivative of a constant is 00, and the derivative of xx with respect to xx is 11, so h(x)=ddx(x)+ddx(2)=1+0=1h'(x) = \frac{d}{dx}(x) + \frac{d}{dx}(2) = 1 + 0 = 1.
  4. Applying Quotient Rule: Now we apply the quotient rule: f(x)=(6x(x+2)(3x2+1)1)(x+2)2f'(x) = \frac{(6x \cdot (x + 2) - (3x^2 + 1) \cdot 1)}{(x + 2)^2}.
  5. Simplifying Numerator: We simplify the numerator: 6x×(x+2)(3x2+1)=6x2+12x3x21=3x2+12x16x \times (x + 2) - (3x^2 + 1) = 6x^2 + 12x - 3x^2 - 1 = 3x^2 + 12x - 1.
  6. Evaluate at x=3x = -3: Now we have f(x)=3x2+12x1(x+2)2f'(x) = \frac{3x^2 + 12x - 1}{(x + 2)^2}. We need to evaluate this derivative at x=3x = -3.
  7. Calculate Numerator: Substitute x=3x = -3 into the derivative: f(3)=3(3)2+12(3)1(3+2)2f'(-3) = \frac{3(-3)^2 + 12(-3) - 1}{(-3 + 2)^2}.
  8. Calculate Denominator: Calculate the numerator: 3(3)2+12(3)1=3(9)361=27361=103(-3)^2 + 12(-3) - 1 = 3(9) - 36 - 1 = 27 - 36 - 1 = -10.
  9. Final Result: Calculate the denominator: (3+2)2=(1)2=1(-3 + 2)^2 = (-1)^2 = 1.
  10. Final Result: Calculate the denominator: (3+2)2=(1)2=1(-3 + 2)^2 = (-1)^2 = 1.Now we have f(3)=(10)/1=10f'(-3) = (-10) / 1 = -10.

More problems from Find derivatives of using multiple formulae