Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(1)/(x)e^(x).
Find 
f^(')(x).
Choose 1 answer:
(A) 
-(1)/(x^(2))e^(x)
(B) 
-(1)/(x^(2))((1)/(x)+e^(x))
(C) 
(1)/(x)e^(x)
(D) 
e^(x)((1)/(x)-(1)/(x^(2)))

Let f(x)=1xex f(x)=\frac{1}{x} e^{x} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1x2ex -\frac{1}{x^{2}} e^{x} \newline(B) 1x2(1x+ex) -\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right) \newline(C) 1xex \frac{1}{x} e^{x} \newline(D) ex(1x1x2) e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)

Full solution

Q. Let f(x)=1xex f(x)=\frac{1}{x} e^{x} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1x2ex -\frac{1}{x^{2}} e^{x} \newline(B) 1x2(1x+ex) -\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right) \newline(C) 1xex \frac{1}{x} e^{x} \newline(D) ex(1x1x2) e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)
  1. Product Rule Derivative: Use the product rule for derivatives: (ddx)(uv)=uv+uv(\frac{d}{dx})(u\cdot v) = u'v + uv'.
  2. Identify uu and vv: Let u=1xu = \frac{1}{x} and v=exv = e^{x}. Now find the derivatives uu' and vv'.
  3. Calculate uu' and vv': The derivative of u=1xu = \frac{1}{x} is u=1x2u' = -\frac{1}{x^2}.
  4. Apply Product Rule: The derivative of v=exv = e^{x} is v=exv' = e^{x}.
  5. Substitute into Formula: Apply the product rule: f(x)=uv+uvf'(x) = u'v + uv'.
  6. Simplify Expression: Substitute uu', uu, vv, and vv' into the formula: f(x)=(1x2)ex+(1x)exf'(x) = (-\frac{1}{x^2})e^{x} + (\frac{1}{x})e^{x}.
  7. Final Answer: Simplify the expression: f(x)=ex(1x2+1x)f'(x) = e^{x}(-\frac{1}{x^2} + \frac{1}{x}).
  8. Final Answer: Simplify the expression: f(x)=ex(1x2+1x)f'(x) = e^{x}(-\frac{1}{x^2} + \frac{1}{x}).The final answer is f(x)=ex(1x1x2)f'(x) = e^{x}(\frac{1}{x} - \frac{1}{x^2}).

More problems from Find derivatives of using multiple formulae