Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
f
(
x
)
=
1
x
e
x
f(x)=\frac{1}{x} e^{x}
f
(
x
)
=
x
1
e
x
.
\newline
Find
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
x
2
(
1
x
+
e
x
)
-\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right)
−
x
2
1
(
x
1
+
e
x
)
\newline
(B)
e
x
(
1
x
−
1
x
2
)
e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)
e
x
(
x
1
−
x
2
1
)
\newline
(C)
−
1
x
2
e
x
-\frac{1}{x^{2}} e^{x}
−
x
2
1
e
x
\newline
(D)
1
x
e
x
\frac{1}{x} e^{x}
x
1
e
x
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
Let
f
(
x
)
=
1
x
e
x
f(x)=\frac{1}{x} e^{x}
f
(
x
)
=
x
1
e
x
.
\newline
Find
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
x
2
(
1
x
+
e
x
)
-\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right)
−
x
2
1
(
x
1
+
e
x
)
\newline
(B)
e
x
(
1
x
−
1
x
2
)
e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)
e
x
(
x
1
−
x
2
1
)
\newline
(C)
−
1
x
2
e
x
-\frac{1}{x^{2}} e^{x}
−
x
2
1
e
x
\newline
(D)
1
x
e
x
\frac{1}{x} e^{x}
x
1
e
x
Use product rule:
Use the product rule for derivatives:
(
d
d
x
)
(
u
⋅
v
)
=
u
′
v
+
u
v
′
(\frac{d}{dx})(u\cdot v) = u'v + uv'
(
d
x
d
)
(
u
⋅
v
)
=
u
′
v
+
u
v
′
.
Find
u
′
u'
u
′
and
v
′
v'
v
′
:
Let
u
=
1
x
u = \frac{1}{x}
u
=
x
1
and
v
=
e
x
v = e^x
v
=
e
x
. Now find the derivatives
u
′
u'
u
′
and
v
′
v'
v
′
.
Apply product rule:
The derivative of
u
=
1
x
u = \frac{1}{x}
u
=
x
1
is
u
′
=
−
1
x
2
u' = -\frac{1}{x^2}
u
′
=
−
x
2
1
.
Substitute into formula:
The derivative of
v
=
e
x
v = e^x
v
=
e
x
is
v
′
=
e
x
v' = e^x
v
′
=
e
x
.
Simplify expression:
Now apply the product rule:
f
′
(
x
)
=
u
′
v
+
u
v
′
f'(x) = u'v + uv'
f
′
(
x
)
=
u
′
v
+
u
v
′
.
Combine terms:
Substitute
u
′
u'
u
′
,
u
u
u
,
v
v
v
, and
v
′
v'
v
′
into the formula:
f
′
(
x
)
=
(
−
1
x
2
)
e
x
+
(
1
x
)
e
x
f'(x) = (-\frac{1}{x^2})e^x + (\frac{1}{x})e^x
f
′
(
x
)
=
(
−
x
2
1
)
e
x
+
(
x
1
)
e
x
.
Factor out
e
x
e^x
e
x
:
Simplify the expression:
f
′
(
x
)
=
−
e
x
x
2
+
e
x
x
f'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}
f
′
(
x
)
=
−
x
2
e
x
+
x
e
x
.
Factor out
e
x
e^x
e
x
:
Simplify the expression:
f
′
(
x
)
=
−
e
x
x
2
+
e
x
x
f'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}
f
′
(
x
)
=
−
x
2
e
x
+
x
e
x
.Combine the terms:
f
′
(
x
)
=
e
x
(
−
1
x
2
+
1
x
)
f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right)
f
′
(
x
)
=
e
x
(
−
x
2
1
+
x
1
)
.
Factor out
e
x
e^x
e
x
:
Simplify the expression:
f
′
(
x
)
=
−
e
x
x
2
+
e
x
x
f'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}
f
′
(
x
)
=
−
x
2
e
x
+
x
e
x
.Combine the terms:
f
′
(
x
)
=
e
x
(
−
1
x
2
+
1
x
)
f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right)
f
′
(
x
)
=
e
x
(
−
x
2
1
+
x
1
)
.Factor out
e
x
e^x
e
x
:
f
′
(
x
)
=
e
x
(
−
1
x
2
+
1
x
)
f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right)
f
′
(
x
)
=
e
x
(
−
x
2
1
+
x
1
)
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant