Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(1)/(x)e^(x).
Find 
f^(')(x).
Choose 1 answer:
(A) 
-(1)/(x^(2))((1)/(x)+e^(x))
(B) 
e^(x)((1)/(x)-(1)/(x^(2)))
(C) 
-(1)/(x^(2))e^(x)
(D) 
(1)/(x)e^(x)

Let f(x)=1xex f(x)=\frac{1}{x} e^{x} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1x2(1x+ex) -\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right) \newline(B) ex(1x1x2) e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \newline(C) 1x2ex -\frac{1}{x^{2}} e^{x} \newline(D) 1xex \frac{1}{x} e^{x}

Full solution

Q. Let f(x)=1xex f(x)=\frac{1}{x} e^{x} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 1x2(1x+ex) -\frac{1}{x^{2}}\left(\frac{1}{x}+e^{x}\right) \newline(B) ex(1x1x2) e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \newline(C) 1x2ex -\frac{1}{x^{2}} e^{x} \newline(D) 1xex \frac{1}{x} e^{x}
  1. Use product rule: Use the product rule for derivatives: (ddx)(uv)=uv+uv(\frac{d}{dx})(u\cdot v) = u'v + uv'.
  2. Find uu' and vv': Let u=1xu = \frac{1}{x} and v=exv = e^x. Now find the derivatives uu' and vv'.
  3. Apply product rule: The derivative of u=1xu = \frac{1}{x} is u=1x2u' = -\frac{1}{x^2}.
  4. Substitute into formula: The derivative of v=exv = e^x is v=exv' = e^x.
  5. Simplify expression: Now apply the product rule: f(x)=uv+uvf'(x) = u'v + uv'.
  6. Combine terms: Substitute uu', uu, vv, and vv' into the formula: f(x)=(1x2)ex+(1x)exf'(x) = (-\frac{1}{x^2})e^x + (\frac{1}{x})e^x.
  7. Factor out exe^x: Simplify the expression: f(x)=exx2+exxf'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}.
  8. Factor out exe^x: Simplify the expression: f(x)=exx2+exxf'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}.Combine the terms: f(x)=ex(1x2+1x)f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right).
  9. Factor out exe^x: Simplify the expression: f(x)=exx2+exxf'(x) = -\frac{e^x}{x^2} + \frac{e^x}{x}.Combine the terms: f(x)=ex(1x2+1x)f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right).Factor out exe^x: f(x)=ex(1x2+1x)f'(x) = e^x\left(-\frac{1}{x^2} + \frac{1}{x}\right).

More problems from Find derivatives of using multiple formulae